• Title/Summary/Keyword: Nano dot

Search Result 165, Processing Time 0.031 seconds

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF

A Nano-structure Memory with SOI Edge Channel and A Nano Dot (SOI edge channel과 나노 점을 갖는 나노 구조의 기억소자)

  • 박근숙;한상연;신형철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.48-52
    • /
    • 1998
  • We fabricated the newly proposed nano structure memory with SOI edge channel and a nano dot. The width of the edge channel of this device, which uses the side wall as a channel and has a nano dot on this channel region, was determined by the thickness of the recessed top-silicon layer of SOI wafer. The size of side-wall nano dot was determined by the RIE etch and E-Beam lithography. The I$_{d}$-V$_{d}$, I$_{d}$-V$_{g}$ characteristics of the devices without nano dots and memory characteristics of the devices with nano dots were obtained, where the voltage scan was done between -20 V and 14 V and the threshold voltage shift was about 1 V.t 1 V.

  • PDF

Quantum Dot Based Mode-Locked Diode Lasers and Coherent Buried Heterostructure Photonic Crystal Nano Lasers

  • Kim, Ji-Myeong;Delfyett, Peter;Notomi, Masaya
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.122-122
    • /
    • 2013
  • In this talk, some optical properties of quantum dot based mode-locked diode lasers and photonic crystal nano lasers will be discussed. Linewidth enhancement factor, chirp and interband injection locking technique of quantum dot mode-locked lasers will be presented. Also various types of photonic crystal buried heterostructure lasers toward coherent nano laser will be covered as well.

  • PDF

Glass Slide-based Immunosensing for C-Reactive Protein Using Quantum Dot-Antibody Conjugate

  • Kim, Namsoo;Oh, Sun Mi;Kim, Chong-Tai;Cho, Yong Jin
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • C-Reactive protein (CRP), which is an 118 kDa pentameric protein, was secreted by the liver is an important biomarker for coronary disease, hypertension and inflammation. In this study, a method for CRP detection exploiting quantum dot (Qdot)-antibody conjugate was developed according to an indirect-competitive immunosensing protocol. For this purpose, a streptavidin-bound $Qdot_{605}$ was linked with a separately prepared biotinylated monoclonal antirat CRP antibody to produce a Qdot-antibody conjugate. The immunosensing was performed at 0.1 and 20 nM of the coating antigen and conjugate, respectively. The current method was found very sensitive in CRP detection, judging from the concentration-dependent fluorescence emission.

Cell Characteristics of a Multiple Alloy Nano-Dots Memory Structure

  • Kil, Gyu-Hyun;Lee, Gae-Hun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.240-240
    • /
    • 2010
  • A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (~5.2 eV) and extremely high dot density (${\sim}\;1.2{\times}10^{13}/cm^2$) was fabricated. Its structural effect for multiple layers was evaluated and compared to one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with 2-4 multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler-Nordheim (FN)-tunneling could be a candidate structure for future flash memory.

  • PDF

Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching (초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발)

  • Kim, Han-Hee;Jeon, Eun-Chae;Cha, Jin-Ho;Lee, Je-Ryung;Kim, Chang-Eui;Choi, Hwan-Jin;Je, Tae-Jin;Choi, Doo-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

Study on Effect of Various Underlayer on Bilayer Agglomerlation (다양한 하지층이 이중층의 응집현상에 미치는 영향에 관한 연구)

  • Ha, J.H.;Ryu, D.H.;Im, H.W.;Jung, J.M.;Choi, H.J.;Hong, I.G.;Koh, J.H.;Koo, S.M.;Kamiko, M.;Ha, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.233-241
    • /
    • 2012
  • We have deposited the bilayer consisted of the underlayer and the overlayer by using DC magnetron sputter on Single crystal MgO (001) substrate. This bilayer was fabricated at fixed annealing temperature and time. We have controlled agglomeration effect by changing of the bilayer thickness. Finally, we have made the self-organization and nano-structured film. In this processing, we have made nano-dot which consists of the underlayer and the overlayer, unlike the existing method called the agglomeration effect in the single layer. The underlayer has deposited using Ti, Cr and Co. And the overlayer has deposited with Ag. Through the analysis of Atomic force microscopy (AFM), the microstructure of underlayer is observed by AFM to confirm the formation of nano-dot. As the nano-dot through above processing, we have found that the nano-dot has the different shape. As a result, when we manufactured nano-dot through the agglomeration effect of bi-layer, the best matching material is Ti for underlayer. And also, we have found that MgO/Ti/Ag samples have been grown expitaxially toward the direction of MgO (001) by X-ray Diffraction analysis.