• Title/Summary/Keyword: Nano ceramic

Search Result 732, Processing Time 0.023 seconds

Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting (급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성)

  • Kang, Hyun-Su;Kang, Bo-Ram;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.495-501
    • /
    • 2014
  • Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.

Effect of Ni dopant on the multiferroicity of BiFeO3 ceramic

  • Hwang, J.S.;Yoo, Y.J.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.1-139.1
    • /
    • 2016
  • Multiferroic materials are of great interest because of its potential applications in the design of devices combining magnetic, electronic and optical functionalities. Among various multiferroic materials, $BiFeO_3$(BFO) is known to be one of the intensively focused mainly due to the possibility of multiferroism at device working temperature (> $200^{\circ}C$). However, leakage current and weak polarization resulting from oxygen deficiency and crystalline defect should be resolved. Furthermore the magnetic ordering of pure BFO mainly prefers to have antiferromagnetic coupling. Up to now many attempts have been performed to improve the ferromagnetic and the ferroelectric properties of BFO by doping. In this work, we investigated the effects of Ni substitution on the multiferroism of bulk BFO. Four BFO samples (a pure BFO and three Ni-doped BFO's; $BiFe_{0.99}Ni_{0.01}O_3$, $BiFe_{0.98}Ni_{0.02}O_3$ and $BiFe_{0.97}Ni_{0.03}O_3$) were synthesized by the standard solid-state reaction and rapid sintering technique. The XRD results reveal that Ni atoms are substituted into Fe-sites and give rise to phase transition of cubic to rhombohedal. By using vibrating sample magnetometer and standard ferroelectric tester, the multiferroic properties at room temperature were characterized. We found that the magnetic moment of Ni-doped BFO turned out to be maximized for 3% of Ni dopant.

  • PDF

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.

The effect of TiCrN coating on high temperature stability of Inconel 617 (TiCrN 코팅이 Inconel 617 합금의 고온안정성에 미치는 영향)

  • Lee, Byeong-Woo;Park, Jong-Cheon;Kim, Mi-Ru;Koo, Jin-Heui;Kim, Byeong-Ik;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.235-239
    • /
    • 2011
  • TiCrN layers (Ti : Cr = 20 : 80 and 5 : 95 wt%) were deposited on Inconel 617 and the effect of TiCrN coating on the high temperature stability of Inconel 617 up to $1000^{\circ}C$ was examined. XRD analysis and microstructural observation showed that vigorous and inhomogenous Cr diffusion to the surface was suppressed by TiCrN layer compare to the uncoated Inconel 617. This led to a distinctive enhancement in thermal oxidation resistance of Inconel 617.

Fluorine-based inductively coupled plasma etching of ZnO film (ZnO 박막의 fluorine-계 유도결합 플라즈마 식각)

  • Park, Jong-Cheon;Lee, Byeong-Woo;Kim, Byeong-Ik;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.230-234
    • /
    • 2011
  • High density plasma etching of ZnO film was performed in $CF_4$/Ar and $SF_6$/Ar inductively coupled plasmas. Maximum etch rates of ~1950 ${\AA}$/min and ~1400 ${\AA}$/min were obtained for $10CF_4$/5Ar and $10SF_6$/5Ar ICP discharges, respectively. The etched ZnO surfaces showed better RMS roughness values than the unetched control sample under most of the conditions examined. In the $10CF_4$/5Ar ICP discharges, very high etch selectivities were obtained for ZnO over Ni (max. 11) while Al showed etch selectivities in the range of 1.6~4.7 to ZnO.

하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과

  • Jo, Hyeon-Dae
    • Ceramist
    • /
    • v.19 no.3
    • /
    • pp.26-35
    • /
    • 2016
  • The purpose of this study is to find the optimum conditions for manufacturing titanium dioxide using a hybrid self-assembly forming method, to confirm the shape, properties and synergy effect of UV protection for hybrid titanium dioxide. Hybrid titanium dioxide, manufactured by forming self-assembly of different sizes consisting of two kinds of titanium dioxides, has micro titanium dioxide (250nm~300nm) for support material, Nano titanium dioxide (20~30nm) for surface material, coating support material. Adjustment experiments of $AlCl_3$ concentration and both titanium dioxide ratio were conducted to find the optimized conditions for the surface coating of titanium dioxide striking a negative charge, a sample made of the optimized process was confirmed through an optical analysis, particle size analysis, and potentiometric analysis. The SPF in-vitro value of the cosmetics samples containing hybrid titanium dioxide showed 15~30% higher levels than the cosmetics samples containing both titanium dioxides mixture.

Microstructure Effects on Bending Strength Characteristics of LPS - SiC Ceramic (LPS - SiC 세라믹스의 굽힘강도 특성에 미치는 미시조직 영향)

  • Yoon, Han-Ki;Jung, Hun-Chae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.77-81
    • /
    • 2006
  • In this study, monolithic liquid phase sintered SiC (LPS-SiC) was made by the hot pressing method with nano-SiC powder, whose particle size is 30 nm and less on the average. Alumina ($Al_{2}O_{3}$), yttria ($Y_{2}O_{3}$), and silica ($S_{i}O_{2}$) were used for sintering additives. To investigate the effects of $S_{i}O_{2}$, the $Al_{2}O_{3}/Y_{2}O_{3}$ composition was fixed and the ratio of $S_{i}O_{2}$ was changed, with seven different ratios tested. And to investigate the effects of the sintering temperature, the sintering temperature was changed, with $1760^{\circ}C,\;1780_{\circ}C$, and $1800_{\circ}C$ being used with a $S_{i}O_{2}$ ratio of 3 wt%. The materials were sintered for 1 hour at $1760^{\circ}C,\;1780^{\circ}C$ and $1800^{\circ}C$ under a pressure of 20 MPa. The effects on sintering from the sintering system used, as well as from the composition of the sintering additives, were investigated by density measurements. Mechanical properties, such as flexural strength, were investigated to ensure the optimum conditions for a matrix of SiCf/SiC composites. Sintered densityand the flexural strength of fabricated LPS-SiC increased with an increase in sintering temperature. Particularly, the relative density of a sintered body at $1800^{\circ}C$ with a non-content of $S_{i}O_{2}$, a specimen of AYSO-1800, was 95%. Also, flexural strength was about 750MPa.

Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP (세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성)

  • Jung, Seung-Hwa;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process (알루미나가 포함된 복합산화물의 제조와 열물성 특성평가)

  • Lim, Saet-Byeol;You, Hee-Jung;Hong, Tae-Whan;Jung, Mie-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.