• 제목/요약/키워드: Nano Signal Processing

Search Result 26, Processing Time 0.028 seconds

On-line Measurement and Characterization of Nano-web Qualities Using a Stochastic Sensor Fusion System Design and Implementation of NAFIS(NAno-Fiber Information System)

  • Kim, Joovong;Lim, Dae-Young;Byun, Sung-Weon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.45-46
    • /
    • 2003
  • A process control system has been developed for measurement and characterization of the nanofiber web qualities. The nano-fiber information system (NAFIS) developed consists of a measurement device and an analysis algorithm, which are a microscope-laser sensor fusion system and a process information system, respectively. It has been found that NAFIS is so successful in detecting irregularities of pore and diameter that the resulting product has been quitely under control even at the high production rate. Pore distribution, fiber diameter and mass uniformity have been readily measured and analyzed by integrating the non-contact measurement technology and the random function-based time domain signal/image processing algorithm. Qualifies of the nano-fiber webs have been revealed in a way that the statistical parameters for the characteristics above are calculated and stored in a certain interval along with the time-specific information. Quality matrix, scale of homogeneity is easily obtained through the easy-to-use GUI information. Finally, ANFIS has been evaluated both for the real-time measurement and analysis, and for the process monitoring.

  • PDF

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

Environmental Monitoring Sub-System for Ubiquitous Terminal Using Metal Oxide Nano-Material Gas Sensor (나노 금속산화물을 이용한 유단말용 환경 모니터링 서브 시스템)

  • Moon, S.E.;Lee, H.Y.;Lee, J.W.;Park, J.;Park, S.J.;Kwak, J.H.;Maeng, S.;Park, K.H;Kim, J.;Udrea, F.;Milne, W.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.63-63
    • /
    • 2008
  • Environmental monitoring sub-system has been developed using gas sensor module, Bluetooth module and PDA phone. The gas sensor module consists of $NO_2or$ CO gas sensor and signal processing chips. Gas sensor is composed of the micro-heater, sensing electrode and sensing material. Metal oxide nano-material was selectively deposited on a substrate with micro-heater and was integrated to the gas sensor module. The change in resistance of the metal oxide nano-material due to exposure of oxidizing or deoxidizing gases is utilized as the principle of this gas sensor operation mechanism. This variation detected in the gas sensor module was transferred to the PDA phone by way of Bluetooth module.

  • PDF

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

Realization of Readout Circuit Through Integrator to Average MCT Photodetector Signals of Noncontact Chemical Agent Detector (비접촉 화학작용제 검출기의 MCT 광검출기를 위한 적분기 기반의 리드아웃 회로 구현)

  • Park, Jae-Hyoun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • A readout circuit for a mercury-cadmium-telluride (MCT)-amplified mid-wave infrared (IR) photodetector was realized and applied to noncontact chemical agent detectors based on a quantum cascade laser (QCL). The QCL emitted 250 times for each wavelength in 0.2-㎛ steps from 8 to 12 ㎛ with a frequency of 100 kHz and duty ratio of 10%. Because of the nonconstant QCL emission power during on-duty, averaging the photodetector signals is essential. Averaging can be performed in digital back-end processing through a high-speed analog-to-digital converter (ADC) or in analog front-end processing through an integrator circuit. In addition, it should be considered that the 250 IR data points should be completely transferred to a PC during each wavelength tuning period of the QCL. To average and minimize the IR data, we designed a readout circuit using the analog front-end processing method. The proposed readout circuit consisted of a switched-capacitor integrator, voltage level shifter, relatively low-speed analog-to-digital converter, and micro-control unit. We confirmed that the MCT photodetector signal according to the QCL source can be accurately read and transferred to the PC without omissions.