• Title/Summary/Keyword: Nano Pattern

Search Result 478, Processing Time 0.026 seconds

Pattern Fabrication on Si (100) Surface by Using Both Nanoscratch and KOH Etching Technique (나노스크래치와 KOH 에칭 기술을 병용한 Si (100) 패턴제작)

  • 윤성원;이정우;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.448-451
    • /
    • 2003
  • This study describes a new maskless nano-fabrication technique of Si (100) using the combination of nanometer-scale mechanical forming by nano-indenter XP and KOH wet etching. First the surface of a Si (100) specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by KOH solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact, some sample structures were fabricated.

  • PDF

Fabrication of High Ordered Nano-sphere Array on Curved Substrate by Nanoimprint Lithography (나노임프린트 리소그래피를 이용한 곡면 기판 위에 정렬된 나노 볼 패턴 형성에 관한 연구)

  • Hong, S.H.;Bae, B.J.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.331-334
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. First, silica nano-sphere array on Si substrate was transferred to PVC film at $130^{\circ}C$ and 7 bar using hot embossing process. Then, silica nano-sphere array on PVC template was removed by soaking the PVC film in buffered oxide etcher. In order to form anti-stiction layer, the PVC template was coated with silicon dioxide layer and self-assembled monolayer. Through UV nanoimprint lithography with the fabricated flexible PVC template, highly ordered nano-sphere array pattern was imprinted on curved substrates with high fidelity.

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon;Kim, Kun-Ji;Park, Soo-Yeon;Jeong, Kwang-Un;Lee, Myong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2966-2970
    • /
    • 2012
  • Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Electron beam lithography patterning research for stamper fabrication using nano-injection molding (나노사출성형용 스탬퍼 제작을 위한 Electron beam lithography 패터닝 연구)

  • Uhm S.J.;Seo Y.H.;Yoo Y.E.;Choi D.S.;Je T.J.;Whang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • We have investigated experimentally a nano patterning using electron beam lithography for the nickel stamper fabrication. Recently, DVD and Blu-ray disk(BD) have nano-scale patterns in order to increase the storage density. Specially, BD has 100nm-scale patterns which are generally fabricated by electron beam lithography. In this paper, we found optimum condition of electron-beam lithography for 100nm-scale patterning. We controlled various conditions of EHP(acceleration voltage), beam current, dose and aperture size in order to obtain optimum conditions. We used 100nm-thick PMMA layer on a silicon wafer as photoresist. We found that EHP was the most dominant factor in electron-beam lithography.

  • PDF

Numerical Analysis Based on Continuum Hypothesis in Nano-imprining process (연속체 개념에 기반한 나노 임프린트 공정해석 연구)

  • 김현칠;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.333-338
    • /
    • 2003
  • Nano-imprint lithography(NIL) is a polymer embossing technique, capable of transferring nano-scale patterns onto a thin film of thermoplastics such as polymethyl methacrylate(PMMA) using this parallel process. Feature size down 10 nm have been demonstrated. In NIL, the pattern is formed by displacing polymer material, which can be squeeze flow of a viscous liquid. Due to the size of the pattern, a thorough understood of the process through experiments may be very different. Therefore we nead to resort to numerical simulation on the embossing process. Generally, there are two ways of numerical simulation on nano-scale flow, namely top-down and bottom-up approach. Top-down approach is a way to simulate the flow assuming that polymer is a continuum. On the contrary, in the bottom-up approach, simulation is peformed using molecular dynamics(MD). However, as latter method is not feasible yet. we chose the top-down approach. For the numerical analysis, two dimensional moving grid was used since the moving grid can predict the flow front. Effects of surface tension as well as the slip at the boundary were also considered.

  • PDF

Fabrication of Precise Patterns using a Laser Beam Expanding Technique in Nano-Replication Printing (nRP) Process (레이저 빔 단면확대를 이용한 나노 복화(複畵)공정의 패턴 정밀도 향상에 관한 연구)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2005
  • A laser beam expanding technique is employed to fabricate precise nano-patterns in a nano-replication printing (nRP) process. In the nRP process, some patterns can be fabricated in the range of several microns inside on a polymerizable resin by using a volume-pixel (voxel) matrix that is transformed from a two-tone bitmap figure file. The liquid monomers are polymerized by means of a two-photon-absorption (TPA) phenomenon that is induced by a femtosecond (fs)-pulse laser. The yokels are generated consecutively to merge into adjoining yokels in the process of fabricating a pattern. The resolution of a fabricated pattern can be obtained under the diffraction limit of a laser beam by the two-photon absorbed polymerization (TPP). In this work, a beam-expanding technique has been applied to enlarge a working area and to fabricate precise patterns. Through this work, a working area is expanded by the technique as much as 2.5 times compared with a case of without a beam expanding technique, and precision of outside patterns is improved.

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.