• 제목/요약/키워드: Nano Metal Powder

검색결과 151건 처리시간 0.032초

Mechanism and Characteristics of Nano-dispersed Powder by Pulsed Discharge Method

  • Kwon, Young-Soon;Ilyin, Alexander P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2003년도 international symposium on advanced powder metallurgy
    • /
    • pp.27-32
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed.

  • PDF

나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능 (The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder)

  • 박권하;최재성;김대현;김영남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향 (The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder)

  • 이창현;신효순;여동훈;남산
    • 한국전기전자재료학회논문지
    • /
    • 제30권12호
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.

금속.사출성형 특허분석 (A Patent Analysis on Metal Injection Molding Technology)

  • 길상철;배영문;이병민
    • 기술혁신학회지
    • /
    • 제5권3호
    • /
    • pp.382-395
    • /
    • 2002
  • Metal Injection Molding(MIM) is a technology without any mechanical processing, which is a promising area backed up by nano powder technology developed in late 1990's. The market was about 24 billion U$ in 1999. Many applications are made in process development, uses, powder making, hindering and sintering, of which order is in terms of the number of patents. This technologies are mainly developed by US firms, and applied by Japanese firms. Europe and Korea are still catch-up stage. More efforts should be made in this field because new opportunities are opening, thanks to nano technology.

  • PDF

플라즈마 아크 방전법에서 Fe 나노 분말 형성에 미치는 공정변수의 영향 (Effect of the Process Parameters on the Fe Nano Powder Formation in the Plasma Arc Discharge Process)

  • 이길근;김성규
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2003
  • To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline $\alpha$-Fe in the core and the crystalline $Fe_3O_4$ in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

이송식 열 플라즈마를 이용한 나노입자 제조 (Production of Nano Powder by Using Transferred Thermal Plasma)

  • 조태진;김헌창;한창석;김좌연;김영석
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.116-122
    • /
    • 2007
  • It is well known that thermal plasma process has lots of advantages such as high temperature and good quality for synthesis of nano particles. In this research, we attempt the synthesis of nano unitary and composite powder (Ag, Mg-Al, Zr-V-Fe) using transferred thermal plasma. Nano particles of metal alloy, ranging from 20 nm to 150 nm, have been synthesized by this process.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.