• 제목/요약/키워드: Nano Hydroxyapatite (HA)

검색결과 31건 처리시간 0.022초

표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동 (Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds)

  • 최지연;정현정;박방주;정윤기;박귀덕;한동근
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.357-363
    • /
    • 2012
  • Poly(L-lactic acid)(PLLA) 고분자 필름 및 지지체의 세포 친화성을 향상시키기 위하여 산소 플라즈마 처리후 카복실기를 함유한 아크릴산(AA)을 $in$ $situ$ 그래프트시켰다. Stimulated body fluid(SBF) 용액에 15일간 담지시킨 후 hydroxyapatite(HA)를 형성시킨 시료와 phosphate-buffered saline(PBS), fetal bovine serum(FBS), 식염수 및 세포 배양용 배지에 담지시킨 다음 PLLA 시료 표면의 접촉각을 비교해 본 결과, HA 표면이 가장 낮은 접촉각을 나타내었다. 또한 연골세포와 조골세포는 HA 표면 위에서 높은 점착과 성장을 보였으며 연골세포가 HA에 많은 영향을 받는 것으로 확인되었다. 조골세포의 경우 HA 표면 이외에도 FBS나 세포 배양배지에 담지된 표면에서도 높은 세포 증식을 보였다. 더욱이 필름형태보다는 3차원 입체 구조의 다공성 지지체에서 연골세포와 조골세포의 점착과 세포 증식이 향상됨도 확인할 수 있었다. 이러한 표면개질된 PLLA는 조직공학적으로 연골이나 뼈 재생을 위한 유-무기 하이브리드 지지체로 응용될 수 있을 것으로 기대된다.

Fabrication of Composite Drug Delivery System Using Nano Composite Deposition System and in vivo Characterization

  • Chu, Won-Shik;Jeong, Suk-Yong;Pandey, Jitendra Kumar;Ahn, Sung-Hoon;Lee, Jae-Hoon;Chi, Sang-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.81-83
    • /
    • 2008
  • The Rapid Prototyping (RP) technology has advanced in many application areas. In this research, two different types, cylinder and scaffold, of implantable Drug Delivery System (DDS) were fabricated using Nano Composite Deposition System (NCDS), one of the RP systems. The anti-cancer drug (5-fluorouracil, 5-FU), biodegradable polymer (PLGA(85: 15)), and bio ceramic (Hydroxyapatite, HA) were used to form drug-polymer composite material. Both types of DDS were evaluated in vivo environment for two weeks. For evaluation, the cumulative drug release and shape stability were measured. Test results showed that the scaffold DDS provide higher cumulative drug release and has better stability than cylinder DDS.

Dentinal Tubules Occluding Effect Using Nonthermal Atmospheric Plasma

  • Lee, Chang Han;Kim, Young Min;Kim, Gyoo Cheon;Kim, Shin
    • International Journal of Oral Biology
    • /
    • 제43권2호
    • /
    • pp.83-91
    • /
    • 2018
  • Nonthermal atmospheric plasma has been studied for its many biomedical effects, such as tooth bleaching, wound healing, and coagulation. In this study, the effects of dentinal tubules occlusion were investigated using fluoride-carboxymethyl cellulose (F-CMC) gel, nano-sized hydroxyapatite (n-HA), and nonthermal atmospheric plasma. Human dentin specimens were divided to 5 groups (group C, HA, HAF, HAP, and HAFP). Group HA was treated with n-HA, group HAF was treated with n-HA after a F-CMC gel application, group HAP was treated with n-HA after a plasma treatment and group HAFP was treated with n-HA after a plasma and F-CMC gel treatment. The occlusion of dentinal tubules was investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS), which shows Ca/P ratio. In the EDS results, a higher Ca/P ratio was shown in the groups including n-HA than in the control group. The specimens of group HAP and HAFP had a higher Ca/P ratio in retentivity. In the SEM results, there was not a significant difference in the amount of times applied. Therefore, this study suggests F-CMC gel and n-HA treatment using nonthermal atmospheric plasma will be a new treatment method for decreasing hypersensitivity.

Additive biocomponents from catfish by-products enhance the growth of shrimp Litopenaeus vannamei

  • Pham Viet Nam;Tran Vy Hich;Nguyen Van Hoa;Khuong V. Dinh;Nguyen Cong Minh;Trang Si Trung
    • Fisheries and Aquatic Sciences
    • /
    • 제26권6호
    • /
    • pp.367-379
    • /
    • 2023
  • The rapid expansion of shrimp production requires a huge amount of protein sources from soybeans and wild-caught fishmeal; both are becoming a shortage. Meanwhile, catfish production and processing is a giant industry in Vietnam, which produce hundred thousand tonnes of protein- and lipid-rich by-products, annually. Using catfish by-products to gradually replace the traditional protein sources in shrimp aquaculture may bring triple benefits: 1) reducing pressure on wild fish exploitation for fishmeal, 2) reducing the environmental impacts of catfish by-products, and 3) increasing the value and sustainability of aquaculture production. In this study, we used catfish by-products to produce fish protein hydrolysate (FPH) and nano-hydroxyapatite (HA) as additives in feed for Pacific white shrimp (Litopenaeus vannamei). The supplement mixture of FPH and HA was added into the commercial diet (Charoen Pokphand Group [CP], 38% protein, and 6.5% lipid) to reach 38%, 38.5%, 40%, 43%, and 44% of the crude protein content. The survival and growth of shrimps were weekly assessed to day 55. The results showed that the shrimp growth was highest at 43% crude protein content in the feed as indicated by an increase of 124% and 112% in shrimp weight and length, respectively, compared to the commercial reference diet. No negative effects of adding the mixture of FPH and HA on the water quality were observed. Vibrio density was lower than 6.5 × 103 CFU/mL, which is the lowest Vibrio density negatively affecting the shrimp growth and development. These findings indicate that the mixture of FPH and HA are promising additive components in feed for post-larval shrimp L. vannamei diets.

Assessment Corrosion and Bioactive Behavior of Bioglass Coating on Co-Cr-Mo Alloy By Electrophoretic Deposition For Biomedical Applications

  • Areege K. Abed;Ali. M. Mustafa;Ali M. Resen
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.179-194
    • /
    • 2024
  • A layer-by-layer coating was produced using electrophoretic deposition for a HA/Al2O3 coating layer and a bioglass coating layer on Co-Cr-Mo alloy with a roughness of 0.5 ㎛ (400 emery paper SiC). The corrosion behaviour was analyzed by assessing the coating layers' exceptional corrosion resistance, which outperformed the substrate. Cr ion release test using AAS was carried out, indicating that factional graded coating inhibited ion release from the uncoated substrate to coated sample. The porosity was expressed as a percentage, representing the extent of imperfections on the surface of all coatings. These imperfections fell within an acceptable range of 1% to 3%. The roughness of the coated surface was measured using atomic force microscopy, which revealed an excellent roughness value of 3.32 nm. Tape test technique for adhesion revealed that the removal area of the substrate coating layer varied by 11.92%. X-ray diffraction analysis confirmed the presence of all coating material peaks and verified phases of the deposited coating layers. These findings provided evidence that the coating composition remains unaffected by the electrophoretic deposition process. The bioactivity was assessed by immersion in a simulated bodily fluid, which revealed the formation of HCA during a period of 5 days.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

광중합형 글라스아이오노머 시멘트의 탈회 저항성과 결합 강도에 대한 나노미터 입자의 하이드록시아파타이트의 효과 (THE EFFECTS OF NANO-SIZED HYDROXYAPATITE ON DEMINERALIZATION RESISTANCE AND BONDING STRENGTH IN LIGHT-CURED GLASS IONOMER DENTAL CEMENT)

  • 김지희;이용근;김성오;송제선;최병재;최형준
    • 대한소아치과학회지
    • /
    • 제37권1호
    • /
    • pp.24-34
    • /
    • 2010
  • 본 연구의 목적은 광중합형 글라스아이오노머 시멘트에 마이크로 입자의 하이드록시아파타이트와 나노미터 입자의 하이드록시아파타이트를 첨가하였을 때 물리적 성질과 탈회 저항, 결합 강도의 차이를 비교하기 위함이다. 실험에 사용된 광중합형 글라스아이오노머 시멘트는 Fuji II LC 였고 순수한 Fuji II LC GIC는 대조군으로, 15% micro HA- Fuji II LC GIC는 실험군 1, 15% nano HA- Fuji II LC GIC는 실험군 2로 설정한 후 실험을 진행하였고 다음과 같은 결론을 얻었다. 1. CLSM으로 탈회 표면 깊이를 관찰한 결과 대조군 보다 실험군에서 법랑질의 탈회가 덜 발생하였고, 실험군 1 보다 실험군 2에서 법랑질의 탈회가 적게 관찰되었다. 2. SEM을 이용한 탈회면 관찰시 대조군에서 법랑질의 탈회가 더 많이 일어났고, 실험군은 하이드록시아파타이트의 영향으로 탈회가 덜 일어나 표면입자가 보다 규칙적이었다. 두 실험군을 비교했을 때 실험군 2가 실험군 1 보다 탈회에 저항하였다. 3. 결합 강도는 대조군, 실험군 1, 실험군 2 순으로 증가했으며 세 군간에 통계학적으로 유의할 만한 차이가 있었다 (p < 0.05). 4. SEM 상에서 결합 강도 측정 후 파절된 면을 관찰한 결과 하이드록시아파타이트를 포함하는 실험군에서 골 유사 아파 타이트 추정 입자가 관찰되었으며 실험군 1 보다 실험군 2에서 더 많은 입자가 형성되었다.

Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs

  • Yang, Cheryl;Lee, Jung-Seok;Jung, Ui-Won;Seo, Young-Kwon;Park, Jung-Keug;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제43권6호
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods: Five dogs were used in this study. Bilateral 4 mm${\times}$2 mm (depth${\times}$mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLCcultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results: There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cellseeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions: These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가 (Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold)

  • 유훈;송경호;임현창;이중석;윤정호;서영권;정의원;이용근;오남식;최성호
    • 대한구강악안면임플란트학회지
    • /
    • 제18권2호
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.