• Title/Summary/Keyword: Nano Cu powder

Search Result 118, Processing Time 0.034 seconds

Microstructure and Properties of Cu Dispersed Al2O3 Nanocomposites Prepared by Pressureless Sintering (상압소결법으로 제조한 Cu 입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • Lee, Kyong-Hwan;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.280-284
    • /
    • 2009
  • The pressureless sintering behavior of $Al_2O_3$/Cu powder mixtures, prepared from $Al_2O_3$/CuO and $Al_2O_3$/Cu-nitrate, has been investigated. Microstructural observation revealed that $Al_2O_3$ powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at $1400^{\circ}C$ for 4 min using infrared heating furnace with the heating rate of $200^{\circ}C$/min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in $Al_2O_3$/MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 $MPa{\cdot}m^{1/2}$, compared with monolithic $Al_2O_3$. The mechanical properties were discussed in terms of microstructural characteristics.

Fracture Toughness of $Al_2O_3$/5vol.%Cu Nanocomposites Fabricated by PECS (PECS에 의해 제조된 $Al_2O_3$/5vol.%Cu 나노복합재료의 파괴인성)

  • 민경호;홍대희;김대건;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.149-153
    • /
    • 2000
  • In this study, the fabrication of $Al_2O_3$/5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of $Al_2O_3$ and Cu elemental powders. The ball-milled powders were sintered with Pulse Electric Current Sintering (PECS) facility. The relative densities of specimens sintered at $1200^{\circ}C$ and $1250^{\circ}C$ after soaking process at $900^{\circ}C$ were 96% and over 97%, respectively. The sintered microstructures were composed of $Al_2O_3$ matrix and the nano-sized Cu particles distributed on grain boundaries of $Al_2O_3$ matrix. The nanocomposite exhibited the enhanced fracture toughness compared with general monolithic $Al_2O_3$. The toughness increase was explained by the crack deflection and bridging by dispersed Cu particles.

  • PDF

Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid (가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결)

  • Kim, Jin-Chun;Goo, Wang-Heo;Yoo, Joo-Sik
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

Study of Synthesis and Magnetic Properties of Ni and Ni-Cu Nano Metal Powders Prepared by the Pulsed Wire Evaporation(PWE) Method (전기폭발법에 의한 Ni 및 Ni-Cu 나노 금속 분말의 제조와 자기적 특성연구)

  • 박중학;엄영랑;김경호;김흥희;이창규
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop ($\pm$20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

Study on the Properties of Catalase Activity Using Cuprite Nano-Particles Synthesized by Hydrolysis Method (가수분해법에 의해 제조된 아산화구리 나노분말을 이용한 과산화수소 탈수 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • $Cu_2O$ nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at $40^{\circC}$ and their catalase activities of $H_2O_2$ were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline $Cu_2O$, but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.