• Title/Summary/Keyword: Nano Channel Flow

Search Result 29, Processing Time 0.019 seconds

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

Molecular-dynamic simulation on the equilibrium and dynamical properties of fluids in a nano-channel

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-214
    • /
    • 2008
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids (the Lennard-Jones fluid, water and aqueous sodium-chloride solution) confined between two plates that are separated by 1.086 nm; included in the equilibrium properties are the density distribution and the static structure, and the diffusivity in the dynamic property. Three kinds of fluids considered in this study are. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

  • PDF

MOLECULAR-DYNAMIC SIMULATION ON THE STATICAL AND DYNAMICAL PROPERTIES OF FLUIDS IN A NANO-CHANNEL

  • Hoang, Hai;Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • The equilibrium molecular-dynamic simulations have been performed to estimate the properties of the three kinds of fluids confined between two plates that are separated by 1.086 nm; included in the statical properties are the density distribution and the static structure, and the autocorrelation velocity function in the dynamic property. Three kinds of fluids considered in this study are the Lennard-Jones fluid, water and aqueous sodium-chloride solution. The water molecules are modeled by using the SPC/E model and the ions by the charged Lennard-Jones particle model. To treat the water molecules, we combined the quaternion coordinates with Euler angles. We also proposed a plausible algorithm to assign the initial position and direction of molecules. The influence of polarization of water molecules as well as the presence of ions in the solution on the properties will be addressed in this study. In addition, we performed the non-equilibrium molecular-dynamic simulation to compute the flow velocity for the case with the gravitational force acting on molecules.

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method (분자-연속체 하이브리드 기법을 이용한 구조물이 있는 나노 채널에서의 쿠에트 유동에 대한 수치적 연구)

  • Kim, Youngjin;Jeong, Myunggeun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.429-434
    • /
    • 2017
  • A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidics cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidics, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Thermophoretic Control of Particle Transport in a Microfluidic Channel (미세유체 채널 내에서 열영동에 의한 입자이동 제어)

  • So, Ju-Hee;Koo, Hyung-Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.730-734
    • /
    • 2019
  • Thermophoresis is a transport phenomenon of particles driven by a temperature gradient of a medium. In this paper, we discuss the thermophoresis of particles in microfluidic channels. In a non-fluidic, stagnant channel, the thermophoretic transport of micro-particles was found to be larger in proportion to the voltage applied to the platinum wire heat source installed in the channel. The variation of the temperature around the platinum wire depending on the voltage was estimated, by using the Callendar-van Dusen equation. The thermophoretic behavior of nano-particles in the same system was observed, which is similar to that of the microparticles. Finally, we fabricated a Y-shaped microfluidic channel with a platinum wire heat source installed in the channel, to realize the thermophoretic phenomenon of the particles in the suspension flowing through the channel. It is shown that the flow of the suspension can be controlled based on the thermophoretic principle.

Measurements of Temperature and Flow Fields with Sub-Millimeter Spatial Resolution Using Two-Color Laser Induced Fluorescence (LIF) and Micro-Particle Image Velocimetry (PIV)

  • Kim Hyun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.716-727
    • /
    • 2005
  • Comprehensive measurements for velocity and temperature fields have been conducted. A Micro PIV 2-color LIF system have been setup to measure the buoyancy driven fields in a 1-mm heated channel with low Grashof-Prandtl numbers [$86]. Fluorescence microscopy is combined with an MPIV system to obtain enough intensity images and clear pictures from nano-scale fluorescence particles. The spatial resolution of the Micro PIV system is $75{\mu}m\;by\;67{\mu}m$ and error due to Brownian motion is estimated $1.05\%$. Temperature measurements have achieved the $4.7\;{\mu}m$ spatial resolution with relatively large data uncertainties the present experiment. The measurement uncertainties have been decreased down to less than ${\pm}1.0^{\circ}C$ when measurement resolution is equivalent to $76\;{\mu}m$. Measured velocity and temperature fields will be compared with numerical results to examine the feasibility of development as a diagnostic technique.