• 제목/요약/키워드: Nano/microfibers

검색결과 4건 처리시간 0.021초

Characterization of degree of alignment of polymer microfibers electrospun on a rotating water collector

  • Li, Shichen;Lee, Bong-Kee
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.125-130
    • /
    • 2021
  • In this study, the degree of alignment of polymer microfibers produced by electrospinning using a rotating water collector was evaluated. Aligned micro- and nano-fibers are required in various practical applications involving anisotropic properties. The degree of fiber alignment has many significant effects; hence, and accurate quantitative analysis of fiber alignment is necessary. Therefore, this study developed a simple and efficient method based on two-dimensional fast Fourier transform, followed by ellipse fitting. As a demonstrative example, the polymer microfibers were electrospun on the rotating water collector as the alignment of microfibers can be easily controlled. The analysis shows that the flow velocity of the liquid collector significantly affects the electrospun microfiber alignment, that is, the higher the flow velocity of the liquid collector, the greater is the degree of microfiber alignment. This method can be used for analyzing the fiber alignment in various fields such as smart sensors, fibers, composites, and textile engineering.

초고속 원심방사에 의한 아세트산프로피온산 셀룰로오스/폴리부틸렌 숙시네이트 다공성 마이크론 섬유 제조 (Fabrication of Porous Cellulose Acetate Propionate/Polybutylene Succinate Microfibers by High Speed Centrifugal Spinning)

  • 김태영;김미경;김진수;이정언;정재훈;김영권;김태현;김기영;염정현
    • 한국염색가공학회지
    • /
    • 제35권4호
    • /
    • pp.239-245
    • /
    • 2023
  • Cellulose is an abundant biodegradable material in nature with excellent properties, but due to its poor processability, it has been widely studied for processing through modification. Cellulose acetate propionate (CAP) is a cellulose derivative in which the hydroxyl group of cellulose is replaced by acetyl and propionyl groups. CAP has several advantages, such as excellent solubility, structural stability, light and weather resistance, and good transparency. Porous nanofibers with excellent specific surface area, which can be applied in various fields, can be easily formed by the phase separation method using highly volatile solvents. High speed centrifugal spinning is a nano/micro fiber preparation method with advantages such as fast spinning and easy alignment control. In this study, a CAP/polybutylene succinate (PBS) spinning solution with chloroform as solvent was prepared to prepare porous microfibers and the fiber morphology was examined as a function of the disk rotation speed in an high speed centrifugal spinning device.

Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유 (TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution)

  • 신동근;진은주;이윤주;권우택;김영희;김수룡;류도형
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.276-281
    • /
    • 2015
  • $TiO_2-SiO_2$ 나노복합소재는 자체가 화학적으로 안정할 뿐만 아니라 광학적, 열적 특성이 매우 우수하여 광화학센서, 촉매 등 다양한 분야에 적용되고 있다. 이러한 구조를 구현하는 방법으로 티타늄이 첨가된 폴리카보실란(PCS) 혼합용액을 전기방사한 후 이를 적절한 산화분위기에서 열처리하여 부직포상의 $TiO_2-SiO_2$ 나노복합섬유를 만들 수 있는데, 이는 기존의 졸겔공정에 의해 제조되는 섬유보다 더 쉽고 안정적인 방법이다. 공정 중 방사된 섬유를 산화분위기에서 $1200^{\circ}C$ 이상까지 열처리하게 되면 크리스토발라이트 기지조직 내에서 아나타제 나노결정상이 매우 균일하게 형성되었다. 또한, 열처리 후 섬유의 표면과 단면은 매우 치밀하고 매끈하였으며 10~20nm 크기의 아나타제 결정입자들이 내부에 균일하게 분포하였다.