• 제목/요약/키워드: Nanjing University

검색결과 1,398건 처리시간 0.029초

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

『찬도방론맥결집성』의 장원소 「진맥입식해」 연구 (A Study on the 「Zhenmairushijie」 by Zhang Yuansu in 『Chandobangronmaekkyulgipseong』)

  • 장우창
    • 대한한의학원전학회지
    • /
    • 제32권1호
    • /
    • pp.1-27
    • /
    • 2019
  • Objectives : By studying the contents of Zhang Yuansu's "Zhenmairushijie", which are introductory remarks of "Chandobangronmaekkyulgipseong", this study attempts to clarify the academic meaning expressed in it and consider his real significance. Methods : First, based on previous studies on Zhang Yuansu and "Wangshuhemaijue", this study divides the contents of "Zhenmairushijie" into 4 chapters and read out the original text. Next, based on Zhang Yuansu's notes and other writings on the original text, this study examines contents in detail. Finally, based on the discussion, this study examines the current significance of academic thoughts expressed in Zhang Yuansu's "Zhenmairushijie". Results & Conclusions : "Zhenmairushijie" emphasizes the combination of nervation and Byeonggi in the process of feeling the pulse for diagnosis, the combination of Byeonggi and Yongyak to declare that the feeling of the pulse for diagnosis is the principle of differential diagnosis. The combination principle of nervation-Byeonggi can be found in comprehensive pulse methods of "Nanjing", and the combination of Byeonggi-Yongyak should follow Ohaeng's Bubuheoshilsajeongbosa principle. Pulse methods of "Wangshuhemaijue" integrated Byeonggi expressed in Uigyeong and Byeonggi in Gyeongbang in the process of the feeling of the pulse for diagnosis to present the principle of diagnosis to perform Byeongjeungronchi. Therefore, "feeling the pulse for diagnosis ipsik" is not only an introductory remark of feeling the pulse for diagnosis, but an comprehensive remark of whole diagnosis as well. It is an introductory remark of the entire medical field due to the nature of oriental medicine which emphasizes diagnosis.

치아(齒牙)에 대한 두 관점의 통합적 이해 - 신(腎)·양명(陽明)의 관계를 중심으로 - (An Integrative Understanding of Two Views on Teeth - Focusing on Relation between Kidney(腎) and Yangming(陽明) -)

  • 신상원;김종현
    • 대한한의학원전학회지
    • /
    • 제32권1호
    • /
    • pp.117-131
    • /
    • 2019
  • Objectives : There are two aspects of Korean medicine perspective on teeth, including the fact that the teeth reveal the thrift and decay of kidney as 'Goljiyeo', and that SujokYangmyeongGyeong flows into the teeth. Since the interrelationships of the two have not been sufficiently studied, this study attempts to investigate the relationship between kidney and Yangmyeong on teeth based on the literature. Methods : In "Huangdineijing", this study examined whether the connection between kidney and Yangmyeong respectively for the teeth appeared, and reviewed the sentences that can simultaneously examine the relationship between kidney and Yangmyeong. This study referred to previous medical books such as "Nanjing" as needed. Results & Conclusions : This study confirmed that there is recognition that kidney and Yangmyeong affected the teeth in a complex way in various provisions such as the provision of "Joksoeumgijeol" in "Lingshu-Jingmai". Kidney and Yangmyeong produce wantonness(血氣) in food(水穀) and transform it to perform the process of producing the vitality together. However, there is an aspect that they oppose each other as acquired spirit and inherent vitality. Therefore, inherent and acquired incongruities may occur depending on the situation, which can be a cause of triggering the pathogenesis of the tooth. : This study has found herbal combinations used frequently in Korean medicine formulas used for insomnia treatment, and a result of network analysis composed of four communities. Each community consisted of herbs in affiliation of Yookmijihwangtang(六味地黃湯) and Samultang(四物湯), Bohyulchunghwatang(補血淸火湯) and Ondamtang(溫膽湯), Jungjihwan(定志丸) and Sanjointang(酸棗仁湯).

The influence of ultrasound and adenosine 5'-monophosphate marination on tenderness and structure of myofibrillar proteins of beef

  • Zou, Ye;Yang, Heng;Zhang, Muhan;Zhang, Xinxiao;Xu, Weimin;Wang, Daoying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권10호
    • /
    • pp.1611-1620
    • /
    • 2019
  • Objective: The aim was to investigate the influence of ultrasound and adenosine 5'-monophosphate (AMP) marination (UAMP) on tenderness and structure of myofibrillar proteins of beef. Methods: Five groups, the untreated meat (Control), deionized water marination (DW), ultrasound followed by DW (UDW), AMP marination (AMP), and ultrasound followed by AMP (UAMP) were studied. Myofibrillar fragmentation, cooking loss, shear force, thermograms, histological observation of meats and myofibrillar proteins properties were investigated in these different treatments. Results: The results showed that UAMP significantly increased myofibrillar fragmentation index from 152 (Control), 231 (AMP), and 307 (UDW) to 355 (p<0.05), respectively. The lowest cooking loss, shear force and peak denaturation temperature were observed in UAMP. In histological observation, UDW and UAMP had more fragmented muscular bundles than the others. Furthermore, a drastic increase in ${\alpha}$-helix and decrease in ${\beta}$-sheet of myofibrillar proteins was observed in UAMP, implying the disaggregation of protein samples. The synchronous fluorescence spectra of myofibrillar proteins in UAMP suggested the combination of ultrasound and AMP could accelerate the unfolding molecular structure and destroying hydrophobic interactions. The results of circular dichroism and synchronous fluorescence spectra for myofibrillar proteins coincided with the microstructures of beef. Conclusion: The results indicate that ultrasound combined with AMP improved meat tenderness not only by disruption in muscle integrity, increasing water retention, but also altering their spatial structure of myofibrillar proteins.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Global Coupled 모델 2와 3.1의 MJO 모의성능 평가 (Assessment of MJO Simulation with Global Coupled Model 2 and 3.1)

  • 문자연;김기영;조정아;양영민;현유경;김백조
    • 대기
    • /
    • 제32권3호
    • /
    • pp.235-246
    • /
    • 2022
  • A large number of MJO skill metrics and process-oriented MJO simulation metrics have been developed by previous studies including the MJO Working Group and Task Force. To assess models' successes and shortcomings in the MJO simulation, a standardized set of diagnostics with the additional set of dynamics-oriented diagnostics are applied. The Global Coupled (GC) model developed for the operation of the climate prediction system is used with the comparison between the GC2 and GC3.1. Two GC models successfully capture three-dimensional dynamic and thermodynamic structure as well as coherent eastward propagation from the reference regions of the Indian Ocean and the western Pacific. The low-level moisture convergence (LLMC) ahead of the MJO deep convection, the low-level westerly and easterly associated with the coupled Rossby-Kelvin wave and the upper-level divergence are simulated successfully. The GC3.1 model simulates a better three-dimensional structure of MJO and thus reproduces more realistic eastward propagation. In GC2, the MJO convection following the LLMC near and east of the Maritime Continent is much weaker than observation and has an asymmetric distribution of both low and upper-level circulation anomalies. The common shortcomings of GC2 and GC3.1 are revealed in the shorter MJO periods and relatively weak LLMC as well as convective activity over the western Indian Ocean.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale

  • Luo, Zhaohe;Wang, Na;Mohamed, Hala F.;Liang, Ye;Pei, Lulu;Huang, Shuhong;Gu, Haifeng
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.241-261
    • /
    • 2021
  • Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them produce a variety of bioactive compounds that have both harmful effects and pharmaceutical potential. In this study, Amphidinium cells were isolated from intertidal sand collected from the East China Sea. The two strains established were subjected to detailed examination by light, and scanning and transmission electron microscopy. The vegetative cells had a minute, irregular, and triangular-shaped epicone deflected to the left, thus fitting the description of Amphidinium sensu stricto. These strains are distinguished from other Amphidinium species by combination characteristics: (1) longitudinal flagellum inserted in the lower third of the cell; (2) icicle-shaped scales, 276 ± 17 nm in length, on the cell body surface; (3) asymmetrical hypocone with the left side longer than the right; and (4) presence of immotile cells. Therefore, they are described here as Amphidinium stirisquamtum sp. nov. The molecular tree inferred from small subunit rRNA, large subunit rRNA, and internal transcribed spacer-5.8S sequences revealed that A. stirisquamtum is grouped together with the type species of Amphidinium, A. operculatum, in a fully supported clade, but is distantly related to other Amphidinium species bearing body scale. Live A.stirisquamtum cells greatly affected the survival of rotifers and brine shrimp, their primary grazers, making them more susceptible to predation by the higher tropic level consumers in the food web. This will increase the risk of introducing toxicity, and consequently, the bioaccumulation of toxins through marine food webs.

Investigation of three-dimensional deformation mechanisms of box culvert due to adjacent deep basement excavation in clays

  • Bu, Fanmin;Yu, Wenrui;Chen, Li;Wu, Erlu
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.565-577
    • /
    • 2022
  • In this study, a series of three-dimensional numerical parametric study was conducted to investigate deformation mechanisms of an existing box culvert due to an adjacent multi-propped basement excavation in clays. Field measurements from an excavation case history are first used to calibrate a baseline Hardening Soil Small Strain (HS-small) model, which is subsequently adopted for parametric study. Results indicate that the basement-box culvert interaction along the basement centerline can be considered as a plane strain condition when the length of excavation (L) reaches 14 He (i.e., final excavation depth). If a plane strain condition (i.e., L/He=12.0) is assumed for analyzing the basement-box culvert interaction of a short excavation (i.e., L/He=2.0), the maximum settlement and horizontal movement of the box culvert are overestimated significantly by up to 15.7 and 5.1 times, respectively. It is also found that the deformation of box culvert can be greatly affected by the basement excavation if the distance between the box culvert and retaining wall is less than 1.5 He. The induced deformation in the box culvert can be dramatically reduced by improving the ground inside the excavation or implementing other precautionary measures. For example, by adding jet grouting columns within the basement and installing an isolation wall behind the retaining structures, the maximum settlements of box culvert are shown to reduce by 37.2% and 13.4%, respectively.

Development of design chart for estimating penetration depth of dynamically installed Hall anchors in soft clays

  • Haijun Zhao;Zhaohan Zhu;Jiawei Che;Wanchun Chen;Qian Yin;Dongli Guo;Haiyang Hu;Shuang Dong
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.209-220
    • /
    • 2023
  • In this study, a series of three-dimensional numerical analyses were carried out to investigate the penetration performance of a dynamically installed Hall anchor. The advanced coupled Eulerian-Lagrangian (CEL) technique was adopted to accurately simulate the large soil deformation during the vertical penetration of a Hall anchor. In total, 52 numerical analyses were conducted to investigate the relationship between anchor penetration depth and the initial kinematic energy. Moreover, a sensitivity analysis was performed to investigate the effects of soil shear strength and soil type on the penetration mechanism of a drop anchor under self-weight. There is a monotonic increase in the penetration depth with an increasing anchor weight when the topsoil of the riverbed is not subjected to erosion. On the other hand, all the computed depths significantly increase when soil erosion is taken into consideration. This is mainly due to an enhanced initial kinematic energy from an increased dropping depth. Both depths increase exponentially with the initial kinematic energy. An enhanced shear strength can potentially increase the side resistance and end-bearing pressure around a drop anchor, thus significantly reducing the downward penetration of a hall anchor. Design charts are developed to directly estimate penetration depth and associated plastic zone due to dynamically installed anchor at arbitrary soil shear strength and anchor kinematic energy.