Kim, Dong-Hyun;Im, Hyeon-Su;Hyeon, Jong-Heon;Jwa, Jeong-Woo
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.179-186
/
2021
We have been developed the smart tourism app and the Instagram and YouTube contents to provide personalized tourism information and travel product information to individual tourists. In this paper, we develop a rule-based smart tourism chatbot with the khaiii (Kakao Hangul Analyzer III) morphological analyzer and Neo4J graph database. In the proposed chatbot system, we use a morpheme analyzer, a proper noun dictionary including tourist destination names, and a general noun dictionary including containing frequently used words in tourist information search to understand the intention of the user's question. The tourism knowledge base built using the Neo4J graph database provides adequate answers to tourists' questions. In this paper, the nodes of Neo4J are Area based on tourist destination address, Contents with property of tourist information, and Service including service attribute data frequently used for search. A Neo4J query is created based on the result of analyzing the intention of a tourist's question with the property of nodes and relationships in Neo4J database. An answer to the question is made by searching in the tourism knowledge base. In this paper, we create the tourism knowledge base using more than 1300 Jeju tourism information used in the smart tourism app. We plan to develop a multilingual smart tour chatbot using the named entity recognition (NER), intention classification using conditional random field(CRF), and transfer learning using the pretrained language models.
사이버 공격을 예측하고 대응하기 위해서 수많은 보안 기업 회사에서는 공격기법의 특성, 수법 유형을 빠르게 파악하고, 이에 대한 Security Intelligence Report(SIR)들을 배포한다. 하지만 각 기업에서 배포하는 SIR들은 방대하며, 형식이 맞춰져 있지 않다. 본 논문은 대량의 비정형한 SIR들에서 정보를 추출하는데 소요되는 시간을 줄이고 효율적으로 파악하기 위해 SIR들에 대해 정형화하고 주요 정보를 추출하기 위해 5가지 분석기술이 적용된 프레임워크를 제안한다. SIR들의 데이터는 정답 라벨이 없기 때문에 비지도 학습방식을 통해 키워드 추출, 토픽 모델링, 문서 요약, 유사문서 검색 총 4가지 분석기술을 제안한다. 마지막으로 SIR들에서 위협 정보 추출하기 위해 데이터를 구축하였으며, 개체명 인식 기술에 적용하여 IP, Domain/URL, Hash, Malware에 속하는 단어를 인식하고 그 단어가 어떤 유형에 속하는지 판단하는 분석기술을 포함한 총 5가지 분석기술이 적용된 프레임워크를 제안한다.
본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.
도시현상의 해석을 위해 공간정보는 필수적이다. 위치정보가 부족한 도시정보를 공간정보로 변환하기 위한 공간정보화 방법론이 꾸준히 개발되어왔다. 정형화된 주소정보나 지명 등을 이용한 Geocoding이나 이미 위치정보가 있는 공간정보와의 공간결합, 참조데이터를 활용한 수작업 형태 등이 대표적이다. 그러나 아직도 행정기관에서 작성되는 수많은 문서정보들은 비정형화된 문서형태로 인해 공간정보화의 수요가 있음에도 그동안 깊이 있게 다루어지지 못하였다. 본 연구는 자연어 처리 모델인 BERT를 활용하여 도시계획과 관련된 공개문서의 공간정보화를 진행한다. 주소가 포함된 문장 요소를 문서로부터 추출하고, 이를 정형화된 데이터로 변환하는 과정을 중점적으로 다룬다. 18년 동안의 도시계획 고시공고문을 학습 데이터로 사용하여 BERT 모델을 학습시켰으며, 모델의 하이퍼파라미터를 직접 조정하여 성능을 향상시켰다. 모델 학습 후의 테스트 결과, 도시계획시설의 유형을 분류하는 모델은 96.6%, 주소 인식 모델은 98.5%, 주소 정제 모델은 93.1%의 정확도를 보였다. 결과 데이터를 GIS 상에 맵핑하였을 때, 특정 지점의 도시계획시설에 관한 변경 이력을 효과적으로 표출할 수 있었다. 본 연구로 도시계획 문서의 공간적 맥락에 대한 깊은 이해를 제공하며, 이를 통해 이해관계자들이 더욱 효과적인 의사결정을 할 수 있게 지원하기를 기대한다.
최근 힐링에 대한 관심이 증가함에 따라 힐링을 콘셉트로 하는 옥외 공간이 조성되고 있다. 보다 전문적이고 심층적인 옥외 힐링 장소 계획·설계·디자인을 위해 88,155건의 블로그 게시글 텍스트 데이터를 개체명 인식하여 텍스트 마이닝을 진행했다. 옥외 힐링 장소의 인식과 특징을 파악을 위해 출현 빈도 분석과 응집 분석을 진행하였다. 선행연구 고찰을 통해 힐링 장소의 6가지 요소를 도출하였으며, 시간과 인원을 추가한 총 8가지 요소를 통해 인식과 특성을 살펴보았다. 분석 결과 사람들은 힐링 장소를 방문하는 데 있어 장소적요소, 시간적요소, 사회적요소, 활동요소를 인원, 식물, 색상·형태, 심리적 요소보다 중요하게 생각하였다. 상위 출현 키워드를 통해 여러 가지 인식과 특성을 파악할 수 있었다. 응집 분석 결과를 통해 장소적요소, 시간적요소, 사회적요소의 키워드들이 응집되어 나타나 주로 어떤 장소, 어떤 시간대, 누구와 함께 방문하는지 구체적으로 살펴볼 수 있었다. 연구를 통해 실제 사람들이 작성한 인식 데이터를 대량 분석하여 힐링 장소의 인식과 특성을 도출하였으며, 계획과 마케팅적으로 활용할 수 있는 구체적인 요소가 나타남을 확인했다.
본 연구는 단행본, 학술지, 보고서 등 다양한 종류의 발간물로 구성된 연구보고서의 참고문헌 데이터베이스를 효율적으로 구축하기 위한 것으로 딥러닝 언어 모델을 이용하여 참고문헌의 자동추출 성능을 비교 분석하고자 한다. 연구보고서는 학술지와는 다르게 기관마다 양식이 상이하여 참고문헌 자동추출에 어려움이 있다. 본 연구에서는 참고문헌 자동추출에 널리 사용되는 연구인 메타데이터 추출과 더불어 참고문헌과 참고문헌이 아닌 문구가 섞여 있는 환경에서 참고문헌만을 분리해내는 원문 분리 연구를 통해 이 문제를 해결하였다. 자동 추출 모델을 구축하기 위해 특정 연구기관의 연구보고서 내 참고문헌셋, 학술지 유형의 참고문헌셋, 학술지 참고문헌과 비참고문헌 문구를 병합한 데이터셋을 구성했고, 딥러닝 언어 모델인 RoBERTa+CRF와 ChatGPT를 학습시켜 메타데이터 추출과 자료유형 구분 및 원문 분리 성능을 측정하였다. 그 결과 F1-score 기준 메타데이터 추출 최대 95.41%, 자료유형 구분 및 원문 분리 최대 98.91% 성능을 달성하는 등 유의미한 결과를 얻었다. 이를 통해 비참고문헌 문구가 포함된 연구보고서의 참고문헌 추출에 대한 딥러닝 언어 모델과 데이터셋 유형별 참고문헌 구축 방향을 제안하였다.
본 연구는 질의 응답(QA) 시스템에서 사용하는 개체명 인식(NER)의 성능을 향상시키기 위하여 시퀀스 태깅 방법론을 적용한 새로운 방법론을 제안한다. 사용자의 질의를 입력 받아 데이터베이스에 저장된 정답을 추출하기 위해서는 사람의 언어를 컴퓨터가 알아들을 수 있도록 구조화 질의어(SQL)와 같은 데이터베이스의 언어로 전환하는 과정이 필요한데, 개체명 인식은 사용자의 질의에서 데이터베이스에 포함된 클래스나 데이터 명을 식별하는 과정이다. 기존의 데이터베이스에서 질의에 포함된 단어를 검색하여 개체명을 인식하는 방식은 동음이의어와 문장성분 구를 문맥을 고려하여 식별하지 못한다. 다수의 검색 결과가 존재하면 그들 모두를 결과로 반환하기 때문에 질의에 대한 해석이 여러 가지가 나올 수 있고, 계산을 위한 시간복잡도가 커진다. 본 연구에서는 이러한 단점을 극복하기 위해 신경망 기반의 방법론을 사용하여 질의가 가지는 문맥적 의미를 반영함으로써 이러한 문제를 해결하고자 했고 신경망 기반의 방법론의 문제점인 학습되지 않은 단어에 대해서도 문맥을 통해 식별을 하고자 하였다. Sequence Tagging 분야에서 최신 기술인 Bidirectional LSTM-CRF 모델을 도입함으로써 신경망 모델이 가진 단점을 해결하였고, 학습되지 않은 단어에 대해서는 온톨로지 기반 특성치를 활용하여 문맥을 반영한 추론을 사용하였다. 음악 도메인의 온톨로지(Ontology) 지식베이스를 대상으로 실험을 진행하고 그 성능을 평가하였다. 본 연구에서 제안한 방법론인 L-Bidirectional LSTM-CRF의 성능을 정확하게 평가하기 위하여 학습에 포함된 단어들뿐만 아니라 학습에 포함되지 않은 단어들도 포함한 질의를 평가에 사용하였다. 그 결과 L-Bidirectional LSTM-CRF 모형을 재학습 시키지 않아도 학습에 포함되지 않은 단어를 포함한 질의에 대한 개체명 인식이 가능함을 확인하였고, 전체적으로 개체명 인식의 성능이 향상됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.