• 제목/요약/키워드: Named-Entity Recognition

검색결과 157건 처리시간 0.021초

Development of the Rule-based Smart Tourism Chatbot using Neo4J graph database

  • Kim, Dong-Hyun;Im, Hyeon-Su;Hyeon, Jong-Heon;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.179-186
    • /
    • 2021
  • We have been developed the smart tourism app and the Instagram and YouTube contents to provide personalized tourism information and travel product information to individual tourists. In this paper, we develop a rule-based smart tourism chatbot with the khaiii (Kakao Hangul Analyzer III) morphological analyzer and Neo4J graph database. In the proposed chatbot system, we use a morpheme analyzer, a proper noun dictionary including tourist destination names, and a general noun dictionary including containing frequently used words in tourist information search to understand the intention of the user's question. The tourism knowledge base built using the Neo4J graph database provides adequate answers to tourists' questions. In this paper, the nodes of Neo4J are Area based on tourist destination address, Contents with property of tourist information, and Service including service attribute data frequently used for search. A Neo4J query is created based on the result of analyzing the intention of a tourist's question with the property of nodes and relationships in Neo4J database. An answer to the question is made by searching in the tourism knowledge base. In this paper, we create the tourism knowledge base using more than 1300 Jeju tourism information used in the smart tourism app. We plan to develop a multilingual smart tour chatbot using the named entity recognition (NER), intention classification using conditional random field(CRF), and transfer learning using the pretrained language models.

비정형 Security Intelligence Report의 정형 정보 자동 추출 (An Automatically Extracting Formal Information from Unstructured Security Intelligence Report)

  • 허윤아;이찬희;김경민;조재춘;임희석
    • 디지털융복합연구
    • /
    • 제17권11호
    • /
    • pp.233-240
    • /
    • 2019
  • 사이버 공격을 예측하고 대응하기 위해서 수많은 보안 기업 회사에서는 공격기법의 특성, 수법 유형을 빠르게 파악하고, 이에 대한 Security Intelligence Report(SIR)들을 배포한다. 하지만 각 기업에서 배포하는 SIR들은 방대하며, 형식이 맞춰져 있지 않다. 본 논문은 대량의 비정형한 SIR들에서 정보를 추출하는데 소요되는 시간을 줄이고 효율적으로 파악하기 위해 SIR들에 대해 정형화하고 주요 정보를 추출하기 위해 5가지 분석기술이 적용된 프레임워크를 제안한다. SIR들의 데이터는 정답 라벨이 없기 때문에 비지도 학습방식을 통해 키워드 추출, 토픽 모델링, 문서 요약, 유사문서 검색 총 4가지 분석기술을 제안한다. 마지막으로 SIR들에서 위협 정보 추출하기 위해 데이터를 구축하였으며, 개체명 인식 기술에 적용하여 IP, Domain/URL, Hash, Malware에 속하는 단어를 인식하고 그 단어가 어떤 유형에 속하는지 판단하는 분석기술을 포함한 총 5가지 분석기술이 적용된 프레임워크를 제안한다.

반자동구축된 개체명 주석코퍼스 DecoNAC과 KoBERT를 이용한 개체명인식 플랫폼 DecoNERO (A Named Entity Recognition Platform Based on Semi-Automatically Built NE-annotated Corpora and KoBERT)

  • 김신우;황창회;윤정우;이성현;최수원;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.304-309
    • /
    • 2020
  • 본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.

  • PDF

AI를 활용한 비정형 문서정보의 공간정보화 (Spatialization of Unstructured Document Information Using AI)

  • 윤상원;박정우;남광우
    • 한국지리정보학회지
    • /
    • 제26권3호
    • /
    • pp.37-51
    • /
    • 2023
  • 도시현상의 해석을 위해 공간정보는 필수적이다. 위치정보가 부족한 도시정보를 공간정보로 변환하기 위한 공간정보화 방법론이 꾸준히 개발되어왔다. 정형화된 주소정보나 지명 등을 이용한 Geocoding이나 이미 위치정보가 있는 공간정보와의 공간결합, 참조데이터를 활용한 수작업 형태 등이 대표적이다. 그러나 아직도 행정기관에서 작성되는 수많은 문서정보들은 비정형화된 문서형태로 인해 공간정보화의 수요가 있음에도 그동안 깊이 있게 다루어지지 못하였다. 본 연구는 자연어 처리 모델인 BERT를 활용하여 도시계획과 관련된 공개문서의 공간정보화를 진행한다. 주소가 포함된 문장 요소를 문서로부터 추출하고, 이를 정형화된 데이터로 변환하는 과정을 중점적으로 다룬다. 18년 동안의 도시계획 고시공고문을 학습 데이터로 사용하여 BERT 모델을 학습시켰으며, 모델의 하이퍼파라미터를 직접 조정하여 성능을 향상시켰다. 모델 학습 후의 테스트 결과, 도시계획시설의 유형을 분류하는 모델은 96.6%, 주소 인식 모델은 98.5%, 주소 정제 모델은 93.1%의 정확도를 보였다. 결과 데이터를 GIS 상에 맵핑하였을 때, 특정 지점의 도시계획시설에 관한 변경 이력을 효과적으로 표출할 수 있었다. 본 연구로 도시계획 문서의 공간적 맥락에 대한 깊은 이해를 제공하며, 이를 통해 이해관계자들이 더욱 효과적인 의사결정을 할 수 있게 지원하기를 기대한다.

소셜미디어 빅데이터의 개체명 인식을 활용한 옥외 힐링 장소 인식 분석 (Outdoor Healing Places Perception Analysis Using Named Entity Recognition of Social Media Big Data)

  • 성정한;이경진
    • 한국조경학회지
    • /
    • 제50권5호
    • /
    • pp.90-102
    • /
    • 2022
  • 최근 힐링에 대한 관심이 증가함에 따라 힐링을 콘셉트로 하는 옥외 공간이 조성되고 있다. 보다 전문적이고 심층적인 옥외 힐링 장소 계획·설계·디자인을 위해 88,155건의 블로그 게시글 텍스트 데이터를 개체명 인식하여 텍스트 마이닝을 진행했다. 옥외 힐링 장소의 인식과 특징을 파악을 위해 출현 빈도 분석과 응집 분석을 진행하였다. 선행연구 고찰을 통해 힐링 장소의 6가지 요소를 도출하였으며, 시간과 인원을 추가한 총 8가지 요소를 통해 인식과 특성을 살펴보았다. 분석 결과 사람들은 힐링 장소를 방문하는 데 있어 장소적요소, 시간적요소, 사회적요소, 활동요소를 인원, 식물, 색상·형태, 심리적 요소보다 중요하게 생각하였다. 상위 출현 키워드를 통해 여러 가지 인식과 특성을 파악할 수 있었다. 응집 분석 결과를 통해 장소적요소, 시간적요소, 사회적요소의 키워드들이 응집되어 나타나 주로 어떤 장소, 어떤 시간대, 누구와 함께 방문하는지 구체적으로 살펴볼 수 있었다. 연구를 통해 실제 사람들이 작성한 인식 데이터를 대량 분석하여 힐링 장소의 인식과 특성을 도출하였으며, 계획과 마케팅적으로 활용할 수 있는 구체적인 요소가 나타남을 확인했다.

딥러닝 언어 모델을 이용한 연구보고서의 참고문헌 자동추출 연구 (Automatic Extraction of References for Research Reports using Deep Learning Language Model)

  • 한유경;최원석;이민철
    • 정보관리학회지
    • /
    • 제40권2호
    • /
    • pp.115-135
    • /
    • 2023
  • 본 연구는 단행본, 학술지, 보고서 등 다양한 종류의 발간물로 구성된 연구보고서의 참고문헌 데이터베이스를 효율적으로 구축하기 위한 것으로 딥러닝 언어 모델을 이용하여 참고문헌의 자동추출 성능을 비교 분석하고자 한다. 연구보고서는 학술지와는 다르게 기관마다 양식이 상이하여 참고문헌 자동추출에 어려움이 있다. 본 연구에서는 참고문헌 자동추출에 널리 사용되는 연구인 메타데이터 추출과 더불어 참고문헌과 참고문헌이 아닌 문구가 섞여 있는 환경에서 참고문헌만을 분리해내는 원문 분리 연구를 통해 이 문제를 해결하였다. 자동 추출 모델을 구축하기 위해 특정 연구기관의 연구보고서 내 참고문헌셋, 학술지 유형의 참고문헌셋, 학술지 참고문헌과 비참고문헌 문구를 병합한 데이터셋을 구성했고, 딥러닝 언어 모델인 RoBERTa+CRF와 ChatGPT를 학습시켜 메타데이터 추출과 자료유형 구분 및 원문 분리 성능을 측정하였다. 그 결과 F1-score 기준 메타데이터 추출 최대 95.41%, 자료유형 구분 및 원문 분리 최대 98.91% 성능을 달성하는 등 유의미한 결과를 얻었다. 이를 통해 비참고문헌 문구가 포함된 연구보고서의 참고문헌 추출에 대한 딥러닝 언어 모델과 데이터셋 유형별 참고문헌 구축 방향을 제안하였다.

온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구 (Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature)

  • 진승희;장희원;김우주
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.253-266
    • /
    • 2018
  • 본 연구는 질의 응답(QA) 시스템에서 사용하는 개체명 인식(NER)의 성능을 향상시키기 위하여 시퀀스 태깅 방법론을 적용한 새로운 방법론을 제안한다. 사용자의 질의를 입력 받아 데이터베이스에 저장된 정답을 추출하기 위해서는 사람의 언어를 컴퓨터가 알아들을 수 있도록 구조화 질의어(SQL)와 같은 데이터베이스의 언어로 전환하는 과정이 필요한데, 개체명 인식은 사용자의 질의에서 데이터베이스에 포함된 클래스나 데이터 명을 식별하는 과정이다. 기존의 데이터베이스에서 질의에 포함된 단어를 검색하여 개체명을 인식하는 방식은 동음이의어와 문장성분 구를 문맥을 고려하여 식별하지 못한다. 다수의 검색 결과가 존재하면 그들 모두를 결과로 반환하기 때문에 질의에 대한 해석이 여러 가지가 나올 수 있고, 계산을 위한 시간복잡도가 커진다. 본 연구에서는 이러한 단점을 극복하기 위해 신경망 기반의 방법론을 사용하여 질의가 가지는 문맥적 의미를 반영함으로써 이러한 문제를 해결하고자 했고 신경망 기반의 방법론의 문제점인 학습되지 않은 단어에 대해서도 문맥을 통해 식별을 하고자 하였다. Sequence Tagging 분야에서 최신 기술인 Bidirectional LSTM-CRF 모델을 도입함으로써 신경망 모델이 가진 단점을 해결하였고, 학습되지 않은 단어에 대해서는 온톨로지 기반 특성치를 활용하여 문맥을 반영한 추론을 사용하였다. 음악 도메인의 온톨로지(Ontology) 지식베이스를 대상으로 실험을 진행하고 그 성능을 평가하였다. 본 연구에서 제안한 방법론인 L-Bidirectional LSTM-CRF의 성능을 정확하게 평가하기 위하여 학습에 포함된 단어들뿐만 아니라 학습에 포함되지 않은 단어들도 포함한 질의를 평가에 사용하였다. 그 결과 L-Bidirectional LSTM-CRF 모형을 재학습 시키지 않아도 학습에 포함되지 않은 단어를 포함한 질의에 대한 개체명 인식이 가능함을 확인하였고, 전체적으로 개체명 인식의 성능이 향상됨을 확인할 수 있었다.