• Title/Summary/Keyword: Nakdong Formation

Search Result 47, Processing Time 0.024 seconds

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Formation Characteristics of $BDOC_{rapid}$ and $BDOC_{slow}$ by Ozonation (오존처리에 의한 $BDOC_{rapid}$$BDOC_{slow}$ 생성 특성)

  • Son, Hee-Jong;Jung, Chul-Woo;Choi, Young-Ik;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1274-1279
    • /
    • 2006
  • The formation characteristics of $BDOC_{rapid}$ and $BDOC_{slow}$ with different ozone dosages for 3 different kinds of waters from Maeri raw water in the down stream of Nakdong river, Hoidong reservoir water in Busan City and treated Maeri raw water(sand filtered) has been investigated in this study. The ozone dosages for producing maximum $BDOC_{total}$ in the Maeri raw water, Hoidong reservoir water and sand filtered water of Maeri were 0.9, 1.1 and 1.4 $mgO_3$/mgDOC respectively. It could be concluded that the ozone dosages for formations of maximum $BDOC_{total}$ were determined by characteristics of water. The ozone dosages for producing maximum $BDOC_{rapid}$ in the Maeri raw water, Hoidong reservoir water and sand filtered water of Maeri were 0.9, 0.9 and 1.0 $mgO_3$/mgDOC respectively that were same or lower than the used ozone dosages for producing maximum $BDOC_{total}$. $BDOC_{slow}$ was being formated and increased continuously with the higher ozone dosages which were the used ozone dosages for maximum formation of $BDOC_{total}$ and $BDOC_{rapid}$. For the best results of a pre-treatment of biofiltration, the optimum ozone dosage ranges in formation of $BDOC_{rapid}/BDOC_{total}$ were $0.6{\sim}1.0\;mgO_3$/mgDOC that were lower than the ozone dosage ranges of $0.9{\sim}1.4\;mgO_3$/mgDOC for the maximum formation $BDOC_{total}$. The reported results indicated that the best and effective ways from economic and technical points of view to determine the optimum ozone dosages of the pretreatment of biofilteration process were investigating and classifying BDOC.

Zircon Morphology and Petrochemistry of Mesozoic Plutonic rocks in Seonsan Area, Korea (선산 지역 중생대 심성암류의 저어콘 헝태 및 암석화학)

  • 이윤종;박순자;장용성;정원우;김중욱;황상구;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.81-102
    • /
    • 2004
  • The plutonic rocks in Seonsan area are divided into dioritic-syenitic rock, gneissose granite, biotite granite and fine grained biotite granite. These rocks intruded into the Pre-cambrian metamorphic complex and are all covered by the Cretaceous Nakdong formation. According to modal minerals, dioritic-syenitic rock corresponds to quartz monzonite, granodiorite, tonalite fields, whereas all the other plutonic rocks fall in granite field. Petrochemically the dioritic-syenitic rock is lower in SiO$_2$ content, differentiation index and Larsen index than all the other plutonic rocks. About the zircon morphology, dioritic-syenitic rock shows (100) dominant type but other granitic rocks exhibit mixed types between (100) and (110) type. The dioritic-syenitic rock could be crystallized in higher temperature than the other plutonic rocks. The plutonic rocks correspond to calc-alkaline rock series, and belong to I-type granite and mostly magnetite-series in magmatic origin. In plutonic processes, the dioritic-syenitic rock with 5kb vapor pressure could intrude into the metamorphic batement at 17km deep below the surface. Later the gneissose granite with lower 3kb vapor pressure could intrude at 10km deep. Sequentially the biotite granite with 0.7kb could intrude at 2km deep. Finally the fine grained biotite granite with 3kb vapor pressure could intrude at 10km deep.

Researches on fluvial terraces in Korea (한국의 하안단구 연구)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.17-33
    • /
    • 2011
  • This study summarizes the research history of fluvial terraces in Korea and examines the geomorphic properties of fluvial terraces in Korea based on the previous works. The research history of fluvial terraces in Korea can be divided into the three periods. The theories of fluvial terraces were spread by the early geomorphologists during the period of Japanese colonial era to mid-1980s. The dissertations on the fluvial terraces were intensively published during the late 1980s to 1990s and their discussions were the center of geomorphology researches in Korea. Since 2000s, the discussions have become more mature and researches have been quantitatively increased as the various methodologies have been developed. The fluvial terraces in Korea are mostly developed in the western and eastern parts of the Taebaek Mountains, upper and middle reaches of Han and Nakdong River, and in the western slopes of Sobaek Mountains, middle reaches of Namhan River, upper and middle reaches of Geum and Seomjin River. Along these rivers in actively uplifted areas, fluvial terraces with much higher altitude from riverbed are observable and incision rates are relatively high. In the sense of the formation ages, they have developed in not regular patterns by the climatic changes during the Quaternary, but in more complicated aspects by the environmental conditions such as climate, hydrology, geology and geomorphology in the specific drainage basins.

Removal of Odorous Compounds Using Ozone and Hydrogen Peroxide (오존과 과산화수소를 이용한 이취미 물질 산화 제거)

  • Lee, Hwa-Ja;Son, Hee-Jong;Roh, Jae-Soon;Lee, Sang-Won;Ji, Ki-Won;Yu, Pyung-Jong;Kang, Lim-Seog
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1323-1330
    • /
    • 2006
  • In this study, five different odor causing compounds in the Nakdong river and rapid sand filtered waters were treated by oxidation from $O_3/H_2O_2$ process. In addition, the change in BDOC formation by the $O_3/H_2O_2$ process was also investigated for considering this advanced oxidation Process as a pre-treatment to the BAC treatment process. The experimental result showed that the removal efficiency of geosmin was higher with the use of 5 mg/L of $O_3$ and 0.2 mg/L of $H_2O_2$ than with the use of 20 mg/L of $O_3$ alone for the sand filtered water. And in general, the removal efficiency of geosmin in raw water was $12{\sim}27%$ lower than the one in sand filtered water. In sand filtered water. the removal efficiencies of geosmin and IPMP decreased when $H_2O_2/O_3$ ratio increases above the optimum ratio. The optimum ratio of $H_2O_2/O_3$ dose was $0.5{\sim}1.0$ for geosmin and $0.2{\sim}1.0$ for IPMP. However, the optimum ratio of $H_2O_2/O_3$ in raw water remove geosmin appealed to $1.0{\sim}3.0$. According to the experimental results for the removal of 5 different odor causing compounds under varied $O_3$ doses, the removal efficiency of IPMP was the highest with 60% and, in overall, $O_3/H_2O_2$ process showed higher removal efficiency than $O_3$ alone process. The BDOC formation by the $O_3/H_2O_2$ process increased from $0.1{\sim}0.25$ to $0.19{\sim}0.34$ comparing to $O_3$ process alone. Therefore, it is concluded that the advanced oxidation process with $O_3/H_2O_2$ can be used as a pretreatment to the BAC treatment process.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.