• 제목/요약/키워드: Naive Bayesian Network

검색결과 41건 처리시간 0.03초

퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습 (Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier)

  • 전설위;임준식
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers 네이브 베이지안 분류기는 샘플 데이터로부터 쉽게 구현될 수 있는 강력하고도 많이 사용되는 형식의 분류기다. 그러나 강한 조건부 독립성으로 인하여 효율이 저하되는 분류 결과를 초래한다. 일반적으로 네이브 베이지안 분류기는 연속성을 가진 특징 데이터의 우도를 처리하기 위해 가우시안 분산을 사용한다. 속성들의 확률밀도는 항상 가우시안 분산에 적합한 것만은 아니다. 또 다른 형식의 분류기는 지도학습을 통해 퍼지 규칙과 퍼지집합을 학습할 수 있는 퍼지신경망이다. 퍼지신경망과 네이브 베이지안 분류기간에는 구조적 유사성을 가지고 있기 때문에 퍼지신경망으로 학습된 분산 그래프를 네이브 베이지안 분류기에 적용하고자 하는 방안이 본 연구의 목적이다. 따라서 네이브 베이지안 분류기에 가우시안 분산 그래프를 사용한 결과와 퍼지 분산 그래프를 사용한 결과를 비교하였다. 이를 위해 leukemia와 colon의 DNA 마이크로어레이 데이터를 적용하여 분류하였다. 네이브 베이지안 분류기에 퍼지 분산 그래프를 사용한 결과 가우시안 분산 그래프를 사용한 결과보다 더 신뢰성이 있음을 보여주었다.

PERFORMANCE EVALUATION OF INFORMATION CRITERIA FOR THE NAIVE-BAYES MODEL IN THE CASE OF LATENT CLASS ANALYSIS: A MONTE CARLO STUDY

  • Dias, Jose G.
    • Journal of the Korean Statistical Society
    • /
    • 제36권3호
    • /
    • pp.435-445
    • /
    • 2007
  • This paper addresses for the first time the use of complete data information criteria in unsupervised learning of the Naive-Bayes model. A Monte Carlo study sets a large experimental design to assess these criteria, unusual in the Bayesian network literature. The simulation results show that complete data information criteria underperforms the Bayesian information criterion (BIC) for these Bayesian networks.

나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법 (Chaff Echo Detecting and Removing Method using Naive Bayesian Network)

  • 이한수;유정원;박지철;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석 (Bayesian Network-based Data Analysis for Diagnosing Retinal Disease)

  • 김현미;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.269-280
    • /
    • 2013
  • 본 논문에서 망막 질환 요인간의 의존도 분석을 위해 효율적인 분류기를 활용할 수 있는 방안을 제시하였다. 먼저 여러 베이지안 네트워크 중에서 TAN (Tree-Augmented Naive Bayesian Network), GBN(General Bayesian Network)과 Markov Blanket으로 특징축소된 GBN과의 분류성능과 예측정확률을 비교분석하였다. 그리고 처음으로, 높은 성능을 보인 TAN을 망막 질환 임상데이터의 의존도 분석에 적용하였다. 의존도 분석 결과, 망막 질환의 진단과 예후 예측에 활용의 가능성을 보였다.

다채널 마이크 환경에서 Naive Bayesian Network의 Decision에 의한 음성인식 성능향상 (Performance Improvement in Distant-Talking Speech Recognition by an Integration of N-best results using Naive Bayesian Network)

  • 지미경;김희린
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.151-154
    • /
    • 2005
  • 원거리 음성인식에서 인식률의 성능향상을 위해 필수적인 다채널 마이크 환경에서 방 안의 도처에 분산되어있는 원거리 마이크를 사용하여 TV, 조명 등의 주변 환경을 음성으로 제어하고자 한다. 이를 위해 각 채널의 인식결과를 통합하여 최적의 결과를 얻고자 채널의N-best 결과와 N-best 결과에 포함된 hypothesis의 frame-normalized likelihood 값을 사용하여 Bayesian network을 훈련하고 인식결과를 통합하여 최선의 결과를 decision 하는데 사용함으로써 원거리 음성인식의 성능을 향상시키고 또한 hands-free 응용을 현실화하기위한 방향을 제시한다.

  • PDF

관계 기반 특징을 이용한 트위터 스패머 탐지 (Spammer Detection using Features based on User Relationships in Twitter)

  • 이찬식;김준태
    • 정보과학회 논문지
    • /
    • 제41권10호
    • /
    • pp.785-791
    • /
    • 2014
  • 트위터는 페이스북과 더불어 전 세계적으로 인기 있는 SNS(Social Network Service)이다. 트위터에서 이메일 인증 방식을 악용하여 대량 생성된 스패머 계정은 유해한 콘텐츠로 트위터 사용자들에게 불편함을 준다. 본 논문에서는 이러한 문제를 해결하고자 관계 기반 특징을 이용한 스패머 탐지 기법을 제안한다. 관계 기반 특징이란 사용자의 호감 정도를 표현할 수 있는 친구 관계 특징과 사용자 간의 유사성을 나타낼 수 있는 유형 관계 특징들을 의미한다. 기존의 스패머 탐지 기법과 본 논문에서 제안하는 탐지 기법의 성능을 스패머의 비율을 3%에서 30%까지 변화시키면서 비교 실험한 결과, 본 논문에서 제안하는 기법이 Naive Bayesian Classifier와 Decision Tree 모두에서 더 우수한 성능을 보였다.

Relation Based Bayesian Network for NBNN

  • Sun, Mingyang;Lee, YoonSeok;Yoon, Sung-eui
    • Journal of Computing Science and Engineering
    • /
    • 제9권4호
    • /
    • pp.204-213
    • /
    • 2015
  • Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN) classifier has been recently proposed and performs classification without any training or quantization phases. While the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional independence among local features is against the compositionality of objects indicating that different, but related parts of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of classification techniques based on NBNN. In this work, we look into this issue, and propose a novel Bayesian network for an NBNN based classification to consider the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding, multiple low-level features for each image patch. We then represent them based on a simple, two-level layered Bayesian network, and design its classification function considering our Bayesian network. To achieve low memory requirement and fast query-time performance, we further optimize our representation and classification function, named relation-based Bayesian network, by considering and representing the relationship between a high-level feature and its low-level features into a compact relation vector, whose dimensionality is the same as the number of low-level features, e.g., four elements in our tests. We have demonstrated the benefits of our method over the original NBNN and its recent improvement, and local NBNN in two different benchmarks. Our method shows improved accuracy, up to 27% against the tested methods. This high accuracy is mainly due to consideration of the conditional dependences between high-level and its corresponding low-level features.

계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식 (Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition)

  • 성재모;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2004
  • 본 논문에서는 필기체 숫자인식을 위해서 계층적으로 서로 다른 레벨의 정보를 표현할 수 있는 구조화된 특징들의 추출 방법과 특징들 사이에 의존도를 이용하여 분류하는 베이지안 망을 제안한다. 이러한 계층적 특징들을 추출하기 위해서 레벨 단위로 가버 필터들을 정의하고, FLD(Fisher Linear Discriminant) 척도를 이용하여 최적화된 가버 필터들을 선택한다. 계층적 가버 특징들은 최적화된 가버 특징들을 이용하여 추출되며, 하위 레벨일수록 더욱 국부적인 정보를 표현한다. 추출된 계층적 가버 특징들의 분류성능 향상을 위해서 가버 특징들 사이의 계층적 의존도를 이용하는 베이지안 망을 생성한다. 본 논문에서 제안하는 방법은 naive Bayesian 분류기, k-nearest neighbor 분류기, 그리고 신경망 분류기들과 함께 필기체 숫자인식에 적용되어 계층적 가버 특징들의 효율성과 계층적 의존도를 이용하는 베이지안 망은 분류성능을 향상시킬 수 있다는 것을 보여준다.

생물학적으로 의미 있는 특질에 기반한 베이지안 네트웍을 이용한 microRNA의 예측 (cmicroRNA prediction using Bayesian network with biologically relevant feature set)

  • 남진우;박종선;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.53-58
    • /
    • 2006
  • MicroRNA (miRNA)는 약 22 nt의 작은 RNA 조각으로 이루어져 있으며 stem-loop 구조의 precursor 형태에서 최종적으로 만들어 진다. miRNA는 mRNA의 3‘UTR에 상보적으로 결합하여 유전자의 발현을 억제하거나 mRNA의 분해를 촉진한다. miRNA를 동정하기 위한 실험적인 방법은 조직 특이적인 발현, 적은 발현양 때문에 방법상 한계를 가지고 있다. 이러한 한계는 컴퓨터를 이용한 방법으로 어느 정도 해결될 수 있다. 하지만 miRNA의 서열상의 낮은 보존성은 homology를 기반으로 한 예측을 어렵게 한다. 또한 기계학습 방법인 support vector machine (SVM) 이나 naive bayes가 적용되었지만, 생물학적인 의미를 해석할 수 있는 generative model을 제시해 주지 못했다. 본 연구에서는 우수한 miRNA 예측을 보일 뿐만 아니라 학습된 모델로부터 생물학적인 지식을 얻을 수 있는 Bayesian network을 적용한다. 이를 위해서는 생물학적으로 의미 있는 특질들의 선택이 중요하다. 여기서는 position weighted matrix (PWM)과 Markov chain probability (MCP), Loop 크기, Bulge 수, spectrum, free energy profile 등을 특질로서 선택한 후 Information gain의 특질 선택법을 통해 예측에 기여도가 높은 특질 25개 와 27개를 최종적으로 선택하였다. 이로부터 Bayesian network을 학습한 후 miRNA의 예측 성능을 10 fold cross-validation으로 확인하였다. 그 결과 pre-/mature miRNA 각 각에 대한 예측 accuracy가 99.99% 100.00%를 보여, SVM이나 naive bayes 방법보다 높은 결과를 보였으며, 학습된 Bayesian network으로부터 이전 연구 결과와 일치하는 pre-miRNA 상의 의존관계를 분석할 수 있었다.

  • PDF

베이지안 분류기를 이용한 소프트웨어 품질 분류 (Software Quality Classification using Bayesian Classifier)

  • 홍의석
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.