• 제목/요약/키워드: Naive Bayes classification

검색결과 125건 처리시간 0.033초

암 분류를 위한 분류기법의 성능비교 (Performance Comparison of Multiclass Classification Methods for cancer Classification)

  • 박윤정;박승수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.220-222
    • /
    • 2006
  • 현재 마이크로어레이 기술은 대량의 유전자 발현 데이터 특히 암과 관련한 데이터들을 쏟아내고 있다. 이 데이터를 기반으로 암의 종류에 따른 유전자들의 차별적 발현 양상을 분석하고 발현량의 변화가 두드러지는 유전자들에 기반하여 암을 분별할 수 있는 분류 모델을 구축한 후, 이것을 암을 진단하거나 예측하는데 이용할 수 있다. 본 논문에서는 마이크로어레이 데이터를 사용해 특징추출방법과 분류를 위한 Naive Bayes, k-Nearest Neighborhood, Decision Tree, Support Vector Machine, Neural Network 알고리즘을 이용하여 최적의 조합을 찾고 어떤 알고리즘이 가장 효과적인지 실험을 통해 분석해보고 성능평가 하는 것을 목표로 한다.

  • PDF

Fast Conditional Independence-based Bayesian Classifier

  • Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
    • Journal of Computing Science and Engineering
    • /
    • 제1권2호
    • /
    • pp.162-176
    • /
    • 2007
  • Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.

이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교 (The performance of Bayesian network classifiers for predicting discrete data)

  • 박현재;황범석
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.309-320
    • /
    • 2020
  • 방향성 비순환 그래프(directed acyclic graph; DAG)라고도 하는 베이지안 네트워크(Bayesian network)는 변수 사이의 관계를 확률과 그래프를 통해 모형화할 수 있다는 점에서 최근 의학, 기상학, 유전학 등 여러 분야에서 다양하게 활용되고 있다. 특히 이산형 자료의 예측에 사용되는 베이지안 네트워크 분류분석기(Bayesian network classifier)가 최근 새로운 데이터 마이닝 기법으로 주목받고 있다. 베이지안 네트워크는 그 구조와 학습 방법에 따라 여러 가지 다양한 모형으로 분류할 수 있다. 본 논문에서는 서로 다른 성질을 가진 이산형 자료를 바탕으로 구조 학습 방법에 차이를 두어 베이지안 네트워크 모형을 학습시킨 후, 가장 간단한 방법인 나이브 베이즈 (naïve Bayes) 모형과 비교해 본다. 학습된 모형들을 여러 가지 실제 데이터에 적용하여 그 예측 정확도를 비교함으로써 최적의 분류 분석 결과를 얻을 수 있는지 살펴본다. 또한 각각의 모형에서 나타나는 그래프를 통해 데이터의 변수 사이의 관계를 비교한다.

Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구 (Android Malware Analysis Technology Research Based on Naive Bayes)

  • 황준호;이태진
    • 정보보호학회논문지
    • /
    • 제27권5호
    • /
    • pp.1087-1097
    • /
    • 2017
  • 스마트 폰의 보급률이 증가함에 따라 스마트 폰을 대상으로 하는 악성코드들이 증가하고 있다. 360 Security의 스마트 폰 악성코드 통계에 따르면 2015년 4분기에 비해 2016년 1분기에 악성코드가 437% 증가하는 수치를 보였다. 특히 이러한 스마트 폰 악성코드 유포의 주요 수단인 악성 어플리케이션들은 사용자 정보 유출, 데이터 파괴, 금전 갈취 등을 목적으로 하는데 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 해주는 인터페이스인 API에 의하여 동작하는 경우가 대부분이다. 본 논문에서는 정적 분석으로 도출한 어플리케이션 내 API의 패턴을 지도 학습 기법으로 머신에 학습하여 정상 어플리케이션과 악성 어플리케이션 내의 API 패턴의 유사도에 따라 악성 어플리케이션을 탐지하는 메커니즘을 제시하고 샘플 데이터에 대하여 해당 메커니즘을 사용하여 도출한 label 별 탐지율과 탐지율 개선을 위한 기법을 보인다. 특히, 제안된 메커니즘의 경우 신종 악성 어플리케이션의 API 패턴이 기존에 학습된 패턴과 일정 수준 유사한 경우 탐지가 가능하며 향후 어플리케이션의 다양한 feature를 연구하여 본 메커니즘에 적용한다면 anti-malware 체계의 신종 악성 어플리케이션 탐지에 사용될 수 있을 것이라 예상된다.

다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 마이닝 (Web Mining Using Fuzzy Integration of Multiple Structure Adaptive Self-Organizing Maps)

  • 김경중;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.61-70
    • /
    • 2004
  • 폭발적으로 성장하고 있는 웹은 수백만 개의 웹 문서를 포함하고 있기 때문에, 적절한 웹사이트를 찾기 어렵다. 사용자 프로파일을 사용하여 적절한 웹사이트를 추천함으로써 웹의 탐색을 개인화 할 수도 있지만 웹 컨텐츠에 대한 사용자의 평가는 사용자의 성격에 관한 다양한 측면을 표현하므로 사용자의 선호도를 예측하기 위해서는 보다 효과적인 방법이 필요하다. 사용자 프로파일은 비선형적인 특성을 가지고 있으므로 분류기를 사용하여 예측하여야 하며 다양한 특성을 예측하기 위해 분류기의 결합이 필요하다. 패턴분류와 시각화에 유용한 구조적응 자기구성지도(SASOM)는 개선된 SOM 모델로서 웹 마이닝에 적절하다. 퍼지 적분은 주관적으로 정의된 분류기의 중요도를 이용하여 결합하는 방법이다. 본 논문에서는 독립적으로 학습된 SASOM의 퍼지적분(fuzzy integral)기반 결합을 이용하여 사용자의 프로파일을 예측하고 UCI 벤치마크 데이타인 Syskill & Webert 데이타를 사용하여 그 성능을 평가한다. 실험결과 제안한 방법이 기존의 naive Bayes 분류기뿐만 아니라 SASOM의 투표결합보다 우수한 성능을 보였다.

Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식 (Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers)

  • 장길진;조아라;박정식;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2014
  • 본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.

감리결과에 텍스트마이닝 기법을 적용한 프로젝트 실패 주요요인 분석 (Project Failure Main Factors Analysis using Text Mining in Audit Evaluation)

  • 장경애;장성용;김우제
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.468-474
    • /
    • 2015
  • 기업은 프로젝트의 중요성을 인지하고 프로젝트의 실패요인을 찾아 위험을 미연에 방지하여 프로젝트의 성공율을 높이기 위해 노력해야 한다. 이것은 급변하는 외부의 변화에 신속히 대응하기 위해 필요하다. 선행연구에서도 이러한 프로젝트의 성공요인 및 실패요인에 대한 연구가 다양하게 수행되었으나, 대부분 설문조사와 샘플링 통계분석으로 연구가 수행되어 데이터의 객관성과 정량적 분석에 한계를 갖고 있었다. 따라서 본 연구에서는 프로젝트의 실패요인 분석을 객관적인 프로젝트의 평가보고서인 감리결과보고서에서 프로젝트의 문제를 발견하고 개선권고사항을 제시하는 부분의 텍스트를 도출하여 텍스트 마이닝을 수행하였다. 텍스트 마이닝에 적용한 알고리즘은 분류 성능이 우수한 NaiveBayes, SMO, J48 알고리즘이다. 실험은 10배 교차검증을 수행하였고 정확률과 재현율로 평가하였다. 도출된 텍스트에서 프로젝트의 실패요인을 분석하여 프로젝트 수행에 활용될 수 있도록 하였다.

SVM 워크로드 분류기를 통한 자동화된 데이터베이스 워크로드 식별 (Automatic Identification of Database Workloads by using SVM Workload Classifier)

  • 김소연;노홍찬;박상현
    • 한국콘텐츠학회논문지
    • /
    • 제10권4호
    • /
    • pp.84-90
    • /
    • 2010
  • 데이터베이스 시스템의 응용분야가 데이터웨어하우징에서 전자상거래에 이르기까지 광범위해지면서 데이터베이스 시스템이 대형화되었다. 이로 인해 데이터베이스 시스템의 성능 향상을 위한 튜닝이 중요한 논점이 되었다. 데이터베이스 시스템의 튜닝은 워크로드 특성을 고려하여 수행할 필요가 있다. 그러나 복합적인 데이터베이스 환경에서 워크로드를 식별하기는 어려우므로 자동적인 식별 방법이 요구된다. 본 논문에서는 데이터베이스 워크로드를 자동적으로 식별하는 SVM 워크로드 분류기를 제안한다. TPC-C와 TPC-W 성능 평가에서 자원할당 파라미터 변경에 따른 워크로드 데이터를 수집하여 SVM을 통해 분류 한다. SVM의 커널별 커널 파라미터와 오류 허용 임계치 값인 C의 조정을 통하여 최적의 SVM 워크로드 분류기를 선택한다. 제안한 SVM 워크로드 분류기와 Decision Tree, Naive Bayes, Multilayer Perceptron, K-NN 분류기의 분류 성능을 비교한 결과, SVM 워크로드 분류기가 다른 기계 학습 분류기보다 9% 이상 향상된 분류 성능을 보였다.

마이크로 블로깅 서비스를 지원하기 위한 컨텍스트 모델 기반 자동 블로깅 시스템 (An Auto-blogging System based Context Model for Micro-blogging Service)

  • 박재민;이상용
    • 디지털융복합연구
    • /
    • 제10권4호
    • /
    • pp.341-346
    • /
    • 2012
  • 소셜 네트워크 서비스의 가장 대표적인 마이크로 블로깅 서비스를 효과적으로 제공하기 위해 사용자가 자신의 현재 상황정보를 간편하게 기록하고 그 정보를 바탕으로 다른 사람들과 네트워크를 형성하고 유지하도록 하는 것이 중요하다. 하지만 모바일 환경에서 사용자가 자신의 정보를 매번 모바일 디바이스를 통해 직접 입력하는 것은 매우 번거로운 작업이다. 본 논문에서는 획득된 사용자 컨텍스트를 이용하여 사용자의 현재 행동과 다음 목적지를 추론한 후, 자동으로 문장을 생성하여 블로깅을 해주는 컨텍스트 모델 기반 자동 블로깅 시스템을 제안한다. 컨텍스트 모델을 생성하기 위해 사용자의 행동 추론은 나이브 베이즈 분류기를 이용하고, 이동중인 사용자의 다음 목적지 추론은 시퀀스 매칭을 이용하였다. 생성된 컨텍스트 모델을 기반으로 5W1H 구조를 이용하여 상황에 적합한 문장을 생성하여 자동으로 블로깅하였다. 제안한 방법의 정확도를 평가한 결과 평균 88.73%의 정확도를 보여 자동 블로깅 서비스가 가능함을 보여주었다.

머신러닝 기반 중노년층의 기능성 위장장애 예측 모델 구현 (Prediction model of peptic ulcer diseases in middle-aged and elderly adults based on machine learning)

  • 이범주
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.289-294
    • /
    • 2020
  • 기능성 위장장애는 Helicobacter pylori 감염 및 비 스테로이드성 항염증제의 사용 등의 원인으로 발생하는 소화기 계통 질환이다. 그동안 기능성 위장장애의 위험요인에 대한 많은 연구들이 수행되어졌으나, 한국인에 대한 기능성 위장장애 예측 모델 제시에 대한 연구는 없는 실정이다. 따라서 본 연구의 목적은 중년 및 노년층을 대상으로 인구학적정보, 비만정보, 혈액정보, 영양성분 정보를 바탕으로 머신러닝을 이용하여 기능성위장장애 예측 모델을 구현하고 평가하는 것이다. 모델생성을 위해 wrapper-based variable selection 메소드와 naive Bayes 알고리즘이 사용되었다. 여성 예측 모델의 분류 정확도는 0.712의 the area under the receiver operating characteristics curve(AUC) 값을 나타냈고, 남성에서는 여성보다 낮은 0.674의 AUC값이 나타났다. 이러한 연구결과는 향후 중년 및 노년층의 위장장애 질환의 예측과 예방에 활용될 수 있다.