• Title/Summary/Keyword: Naeseong-cheon

Search Result 5, Processing Time 0.022 seconds

The Flora in Tributary Region of Middle Stream of the Nakdong River (Young-gang, Naeseong-cheon, Wi-cheon, Gam-cheon and Byeongseong-cheon) (낙동강 중류 지천의 식물상(영강, 내성천, 위천, 감천, 병성천))

  • Jeong, Ji-Hyeon;Hong, Sun-Cheon;Park, Hee-Jun;Paik, Weon-Ki
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.615-632
    • /
    • 2019
  • Field surveys were conducted from May 2016 to October and from April to October 2017 in Tributary Region of Middle Stream of the Nakdong River. The survey was carried out at 66 sites including Young-gang 11, Naeseong-cheon 21, Wi-cheon 16, and Gam-cheon 9, Byeongseong-cheon 9. As a result of investigation, 474 taxa in total ; 99 familly, 288 genera, 421 species, 4 subspecies, 39 varieties and 10 forma. Among them, 5 Korean endemic plants, 7 rare plants, 31 taxa were listed as Floristic Target Species in Korea. Naturalized plants was confirmed 73 taxa, their Urbanization Ratio 22.7%, and naturalization ratio 15.4% in the investigated area. The Life form(Dormancy form) review results as follows ; Therophytes 159 taxa, Hemicryptophytes 91 taxa, Hydrophanerophytes 68 taxa, Geophyte 52 taxa, Nanophanerophytes 35 taxa, Megaphanerophytes 32 taxa, Microphanerophytes 25 taxa, Chamaephytes 12 taxa, and Epiphyten 1 taxa.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

Hydrogeochemical Assessment of Groundwater Quality Security in the Collection Conduit Area, Naeseong-Cheon (내성천 집수매거의 수질 확보를 위한 충적층 지하수의 수질 특성 평가)

  • Shin, Kyung-Hee;Cha, Eun-Jee;Son, Yeong-Cheol;Lee, Seung-Hyun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • It is sometimes necessary to change the location of the collection conduit, which is constructed in shallow sediments in a stream, if the concentrations of $Fe^{2+}$ and $Mn^{2+}$ become too high for water treatment. A total of nine wells, including four shallow wells with a depth of 3 m and five deeper wells with a depth of 6 m, were installed in the study area at Naeseong-cheon in Yecheon-gun. The change in hydrogeochemical features of groundwater and the concentrations of $Fe^{2+}$ and $Mn^{2+}$ were examined at the wells during 5 hours of pumping. As pumping was performed, the velocity of groundwater flow was increased around the pumping well and aeration conditions were developed to precipitate iron and manganese oxides in an oxidizing environment. In addition, the concentrations of $Ca^{2+}$ and $Cl^-$ at the pumping well were increased following the mixing of surface water and groundwater. It is suggested that the center region of the stream would be more suitable for a new collection conduit, considering the concentrations of $Fe^{2+}$ and $Mn^{2+}$ in groundwater and their reducing effect during pumping. The installation of a collection conduit based on field tests performed to ensure water quality enables a reduction in the construction and management costs at water treatment facilities.

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam (영주댐 개방에 따른 호내 조류 변동 모의)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.

The Estimation of Ecological Flow Recommendations for Fish Habitat (하천의 어류 서식환경을 고려한 생태학적 추천유량 산정)

  • Sung, Young-Du;Park, Bong-Jin;Joo, Gea-Jae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.545-554
    • /
    • 2005
  • The detailed interdisciplinary surveys were conducted on the pattern of habitat use of dominant fishes during the spawning and adult stage. The hydraulic parameters of the depth and velocity, discharge, substrate cover streams, and distribution of fish in the Yeonggang, WiCheon, HoeCheon, GeochangwiCheon, CheongdoCheon, DanjangCheon (the Nakdong River Basin) were measured. The Habitat Suitability Criteria was developed for the two fish species (Zacco Platypus and Zacco Temmincki) and life stages(spawning and adult), habitat conditions (depth, velocity and covet). The Physical Habitat Simulation of the Instream Flow Incremental Methodology was applied to calculate for optimal flow and the ecological flow recommendation was proposed by choosing the largest one in the optimal flow. The ecological flow recommendation was $5.0\;m^3/s{\sim}10.0\;m^3/s$ (e.g., $6.5\;m^3/s$ in the NaeseongCheon). Also, the ecological flow recommendations were compared with the existing ecological flow and flow duration analysis.