• Title/Summary/Keyword: NaOH 전처리

Search Result 120, Processing Time 0.026 seconds

Comparison of Smear and Culture Positivity using NaOH Method and NALC-NaOH Method for Sputum Treatment (객담 전처리 방법에 따른 객담 항산균 도말 및 배양 양성률 비교연구)

  • Kang, Hyungseok;Sung, Nackmoon;Lee, Sunsook;Kim, Dohyung;Jeon, Doosoo;Hwang, Soohee;Min, Jinhong;Kim, Jinhee;Won, Youngsub;Park, Seungkyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.5
    • /
    • pp.379-384
    • /
    • 2008
  • Background: Sputum decontamination with NALC-NaOH (N-acetyl-L-cysteine-sodium hydroxide) is known to better detect Mycobacterium tuberculosis (M. tb) by culture than that with using NaOH, which is widely used in Korean hospitals. In this report, sputum samples collected from pulmonary tuberculosis (TB) patients were treated with either NaOH or NALC-NaOH, and we compared the results of smear and culture positivity to determine whether the NALC-NaOH treatment method improves culture positivity in the sputum samples, and especially for those sputum samples that are smear negative and scanty. Methods: For each decontamination method, 436 sputum samples from pulmonary TB patients in the National Masan Tuberculosis Hospital were collected for this study. Sputum from a patient was collected two times for the first and second day of sampling time, and these samples were employed for the decontamination process by performing the 4% NaOH and NALC-2% NaOH treatment methods, respectively, for detecting M. tb by an AFB (Acid Fast Bacilli) smear and also by culture in solid Ogawa medium. Results: The NaOH and NALC-NaOH treatment methods did not significantly affect the AFB smear positivity of the sputum samples (33.0% vs 39.0%, respectively, p=0.078). However, the culture positive percents of M. tb in the Ogawa medium treated with NALC-NaOH and NaOH were 39.7% and 28.0%, respectively, which was a significantly different (p=0.0003). This difference in culture was more prominent in the sputum samples that were smear negative (the positive percents with NALC-NaOH and NaOH were 15.8% and 7.2%, respectively, p=0.0017) and scanty (NALC-NaOH and NaOH were 60.8% and 42.9%, respectively, p=0.036), but not for a smear that was 1+ or higher (p>0.05). Conclusion: NALC-NaOH treatment is better than NaOH treatment for the detection of M. tb by culture, but not by smear, and especially when the AFB smear is negative and scanty.

Impact of Alkali Pretreatment to Enzymatic Hydrolysis of Cork Oak (Quercus Variabilis) (알칼리 전처리가 굴참나무의 효소 당화에 미치는 영향)

  • Yoon, Su Young;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Dissolving part of xylan and lignin in lignocellulosic biomass by base can be used as pretreatment technique. Cork oak was pretreated with sodium hydroxide solution and the pretreatment effects were evaluated with two critical factors - NaOH concentration and pretreatment temperature. Some of xylan and lignin were removed by base pretreatment. At $90^{\circ}C$ and 13% NaOH pretreatment, 22.0% of lignin and 78.8% of xylan removed by base treatment. Enzymatic hydrolysis of cork oak which was pretreated at higher temperature or concentration was further improved. After pretreatment of cork oak with 13% NaOH at $90^{\circ}C$, the conversion rate of cellulose to fermentable sugars were reached up to 91.3%. At ethanol fermentation with enzymatic hydrolysate from different pretreatment conditions, all enzymatic saccharification liquids were well fermented by Saccharomyces cerevisiae.

Optimization of Thermal-alkaline Pre-treatment for Anaerobic Digestion of Flotation Scum in Food Waste Leachate Using Box-Behnken Design and Response Surface Methodology (Box-Behnken 및 반응표면 분석법을 이용한 음식물류 폐수 부상 스컴의 혐기성 소화를 위한 열-알칼리 전처리 최적화)

  • Lee, Dong-Young;Choi, Jae-Min;Kim, Jung-Kwang;Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2015
  • Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL $CH_4/g$ VS was estimated under the optimum conditions at $62.0^{\circ}C$, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.

Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF (에탄올 향상을 위한 탈아세틸화 백합나무 당화액의 발효저해물질 제거와 semi-동시당화발효)

  • Kim, Jo-Eun;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.494-500
    • /
    • 2016
  • In order to remove acetyl group from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH) prior to oxalic acid pretreatment. During the deacetylation ($60^{\circ}C$ for 80 min, 0.8% NaOH), most of the acetyl group were removed from hemicellulose. Simultaneous saccharification and fermentation (SSF) and semi-SSF were carried out based on solid loading (10, 12.5, 15%) of deacetylated biomass and pre-hydrolysis with enzymes (0, 6, 12, 24 h). The highest ethanol was obtained as 26.73 g/L after 120 h when 10% of biomass was used for SSF. It is corresponding to 88.41% of theoretical ethanol yield. At the 12.5% and 15% of biomass loading, the highest ethanol was obtained from 6 h pre-hydrolysis. It was 32.34 g/L and 27.15 g/L, respectively, and corresponding to ethanol yield of 85.58 and 59.87%. In order to remove fermentation inhibitors from hydrolysates, overliming was performed using calcium hydroxide ($Ca(OH)_2$). The highest ethanol was 5.28 g/L after 72 h of fermentation.

Beating Properties with Swelling agent and Concentration for Preparation of MicroFibrillated Cellulose (MFC) (MicroFibrillated Cellulose (MFC) 제조를 위한 전처리 팽윤제의 종류와 농도에 따른 펄프의 고해 특성)

  • Ahn, Eun-Byeol;Jung, Jin-Dong;Jung, Soo-Eune;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.3-10
    • /
    • 2015
  • In this study, we evaluated properties of pulp treated with swelling agent and swelling concentration. We used swelling agent, such as NaOH, DMSO, urea. One of them, pulps treated with NaOH from 0 to 5% measured WRV, beating efficiency, crystallinity and aspect ratio. We identified that NaOH when freeness reaches 100mL CSF was the shortest, on the other hand, WRV didn't change. Because NaOH is good beating efficiency, when pulp treated with various concentration of NaOH from 0 to 5%, pulp treated 1% NaOH was best beating efficiency. However, WRV, crystalline structure and crystallinity didn't change. The more NaOH concentration increased, the more aspect ratio increased, but when NaOH concentration exceeds 3%, aspect ratio decreased. As a result, pulp treated with 1% NaOH was the greatest beating efficiency and WRV, chemical structure didn't change.

A Manufacturing Technique of Agar with Strong Gelling Ability from Gelidium amansii (우뭇가사리로부터 고강도 한천의 제조)

  • DO Jeong-Ryong;PARK Jin-Hee;JO Kil-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.673-676
    • /
    • 1998
  • Preparative conditions of high-gel strength agar from Gelidium amansii have been studied, The effect of NaOH pretreatment on the quality and yields of agar extracted from Gelidium amansli was examined. The Bel strength of agar extracted from C. amansii pretreated with NaOH was higher than that of agar extracted from G. amansii non-pretreated with NaOH. The gel strength of agar extracted from G. amansii was influenced by concentration, temperature and time of pretreatment with NaOH. It was found that the proper concentration, temperature and time of NaOH pretreatment to produce high-gel strength agar was $6\%$ NaOH, $80^{\circ}C$ and 2$\~$3 hrs. The principal sugars of agar extracted from G. amansli were galactose and 3,6-anhydrogalactose.

  • PDF

A Study on the Total Mercury (Hg) Monitoring and Methylmercury (MeHg) Analysis method and Exposure Assessment of Methylmercury (MeHg) in Marine Products (수산물 중 총수은 모니터링 및 메틸수은 분석법 고찰)

  • Kwak, Shin-Hye;Kim, Ki-Cheol;Kim, Kyung-A;Kang, Suk-Ho;Kwon, Hye-Jung;Cho, Yun-Sik;Kang, Kyung-Ja;Lee, Pil-Suk;Cho, Wook-Hyun;Moh, Ara;Park, Yong-Bae;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.168-175
    • /
    • 2018
  • The use of microwave-assisted extraction and an acid-base clean-up process to determine the amount of methylmercury (MeHg) in marine products was suggested in order to improve the complicated sample preparation process. The optimal conditions for microwave-assisted extraction was developed by using a 10% NaCl solution as an extraction solution, setting the extraction temperature at $50^{\circ}C$, and holding for 15 minutes to extract the MeHg in marine products. A NaOH solution was selected as a clean-up substitute instead of L-cysteine solution. Overall, 670 samples of marine products were analyzed for total mercury (Hg). Detection levels were in the range of $0.0006{\sim}0.3801{\mu}g/kg$. MeHg was analyzed and compared using the current food code and the proposed method for 49 samples which contained above 0.1 mg/kg of Hg. Detection ranges of methylmercury followed by the Korea Food Code and the proposed method were $75.25(ND{\sim}516.93){\mu}g/kg$ and $142.07(100.14{\sim}244.55){\mu}g/kg$, respectively. The total analytical time of proposed method was reduced by more than 25% compared with the current food code method.

Optimization Technology of Thermomechanical Pulp Made from Pinus densiflora (I) - Effect of Temperature and NaOH at Presteaming and Refining - (국내산 소나무로 제조되는 열기계펄프 제조 기술 최적화 연구 (1) - 목재 칩의 전처리와 리파이닝 시 온도와 NaOH 처리의 효과 -)

  • Nam, Hyegeong;Kim, Chul-Hwan;Lee, Ji-Young;Park, Hyunghun;Kwon, Sol;Cho, Hu-Seung;Lee, Gyeong-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • Thermomechanical pulping process uses large amounts of energy, mostly electricity to run electrical facilities. Thermomechanical pulp (TMP) made from Pinus densiflora also has a big drawback that refining consumes 90 per cent of the total energy used in TMP process. This study explored to draw up a way to save refining energy through different thermal treatment at the stages of presteaming and refining. Presteaming temperature was $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$. After presteaming at each temperature, refining was carried out at $100^{\circ}C$, $120^{\circ}C$, and $140^{\circ}C$ respectively. In a presteaming stage, steaming temperature over $120^{\circ}C$ greatly contributed to the decrease of refining energy leading to earlier attainment of a target freeness, irrespective of refining temperature. In addition, NaOH treatment with presteaming enhanced better development of fiber properties during refining than presteaming without NaOH. High temperature refining at $140^{\circ}C$ produced a high strength paper, and wood chips treated by alkali responded better to refining than at over $120^{\circ}C$. Improved softening effect on wood chips led to the decrease in shives contents but it gave no effect on pitch contents of TMP.

Simultaneous CPB/Silket Treatment of N/C fabric (N/C 복합소재의 CPB/Silket 일욕 전처리)

  • Choe, Yeon-Ji;Park, Jong-Ho;Kim, Seong-Dong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.47-48
    • /
    • 2008
  • New scouring agent which was stable up to 50% NaOH 350g/l has been developed for simultaneous CPB/silket treatment of N/C union fabric. The physical and dyeing properties of N/C union fabric treated with new scouring agent were measured. Fabric scoured and Mercerized by one bath CPB/silket process showed almost the same degree of Mercerization and K/S value with two bath process.

  • PDF

A Study on Foodwaste Pretreatment for Anaerobic Digestion (혐기성 소화를 위한 음식물쓰레기 전처리 방안에 관한 기초연구)

  • Kim, Jong-Oh;Cho, Kyong-Hwan;Lee, Chang-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.60-66
    • /
    • 2003
  • The purpose of this study was to investigate the effective pretreatment of foodwaste for the anaerobic digestion. Considering the foodwaste generation and the anaerobic digester for municipal wastewater sludges, the some pretreatment processes were performed such as the grinding of foodwastes with the addition of water, the mixing with sludges, and the hydrolysis with the addition of NaOH. The results were as followings ; 1. As the stage of feasibility test in laboratory scale, the foodwaste grinding using a household garbage disposer was performed with three different water mixing ratios of 1:1, 1:5 and 1:9 as weight base. The physicochemical characteristics of grinded foodwaste were analyzed and the effective conditions was recommended as the 1 :5mixing ratio of foodwaste and water and the below 8mm particle size. 2. And the mixing of foodwaste and municipal wastewater sludge was studied with three different mixing ratios of 1:9, 3:7 and 5:5 as weight base. The physicochemical characteristics of the mixed foodwaste and sludges were analyzed and the effective mixing ratio was recommended as 3:7 of foodwaste and sludge.

  • PDF