• Title/Summary/Keyword: Na-MMT

Search Result 47, Processing Time 0.021 seconds

Microstructure and Antibacterial Activity of Phosphonium Montmorillonites

  • Xie, Agui;Yan, Wenyan;Zeng, Xianshen;Dai, Guangjian;Tan, Shaozao;Cai, Xiang;Wu, Ting
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1936-1938
    • /
    • 2011
  • Phosphonium montmorillonites (P-MMTs) were prepared by intercalating dodecyl tributyl phosphonium salt into sodium montmorillonite (Na-MMT) through an ion-exchange method. Microstructure and antibacterial activity of phosphonium montmorillonites were studied by FT-IR, TGA, XRD and Minimum Inhibitory Concentration (MIC), respectively. The results show that phosphonium montmorillonites exhibit higher thermal stability than conventional ammonium montmorillonites, the onset temperature of decomposition is higher than 300 $^{\circ}C$, and the basal spacing of phosphonium montmorillonites is enlarged compared to that of sodium montmorillonite. Phosphonium montmorillonites also show good antibacterial activity with the MIC against E. coli and S. aureus of 150 and 50 $mg{\cdot}L^{-1}$, respectively.

A Study on the Preparation and Flame Retardancy of Compatibilized Blend/Layered Silicate Nanocomposites with Inorganic Flame Retardant (무기계난연제 첨가형 상용화블렌드/층상실리케이트 나노복합재료의 제조 및 난연특성에 관한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.79-85
    • /
    • 2006
  • Olefinic compatibilized blend(R-PP/R-PE)/layered silicate composites have been prepared by melt intercalation technique directed from $Na^{+}$ montmorillonite(MMT) or organophilic montmorillonites while using magnesium hydroxide as flame retardant. Morphology and flammability properties were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetry analysis(TGA), limiting oxygen index(LOI), UL94 test. It is found that the compatibilized blend/layered silicate(Cloisite 20A) nanocomposites have a mixed immiscible-intercalated structure and there is better intercalation when a compatibilizer is combined with the polymer and layered silicate to be melt blended. A very large increase in the LOI value was observed with hybrid filler addition and further enhancement in thermal stability and compatibility of blend was obtained for the compatibilized blend containing small amount of layered silicate.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Preparation and Characterization of Muscovite Mica/UV Coating Materials for Steel

  • Cheong, In-Woo;Kim, Hyeon-Seok;Hwang, Dong-Seop;Yoo, Hye-Jin;Kim, Jin-Tae;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.265-269
    • /
    • 2010
  • This paper describes the exfoliation and surface modification of muscovite mica for UV coating formulation. For the exfoliation of the mica, hydrothermal process was used in the presence of lithium nitrate ($LiNO_3$). After the cation exchange with $Li^+$ ions, the surface of the mica was modified with several amphiphilic substances to increase compatibility and storage stability in UV coating formulation. Such a hydrophobic surface modification affected colloidal stability as well as dispersibility of the exfoliated mica in UV coating solution. Anticorrosive property of mica/UV coated steel plates was tested by salt spray test (SST) and compared with sodium montmorillonite ($Na^+$-MMT)/UV coated steel plates.

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process (초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).

Improvement of Mechanical Interfacial Properties of Epoxy/Clay Nanocomposites Using Silane Intercalant (실란유기화제를 이용한 에폭시/클레이 나노복합재료의 기계적 계면 물성 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • In this wort, the $Na^+-MMT$ has organically modified with silane intercalant to prepare the polymer/clay nanocomposites. The pH. X-ray diffraction (XRD), and contact angles were used to analyze the surface properties of clay and the exfoliation phenomenon of clay interlayer, The mechanical interfacial properties of epoxy/clay nanocomposites were investigated by three-point bending test. From the experimental results. the surface modification made by silane intercalant on clay surface leads to an increase of distance of silicate layers, surface acid value. and electron acceptor parameter of organoclay. The treatments are also necessary and useful for epoxy to intercalate into the interlayer by interacting of electron donor-accepter between basic epoxy and clay surface. The mechanical interfacial properties of the nanocomposites was improved by the presence of dispersed clay nanolayer containing low content of organoclay in comparison with the conventional, which increase the interfacial adhesion between dispersed clay and epoxy resins.

  • PDF

Anti-proliferative Effect of Ulmi Pumilae Cortex Extracts on MCF-7 cells (유근피(楡根皮) 추출물의 유방암 세포주 MCF-7 생장 억제 효과)

  • Cho, Seong-Hui;Cho, Su-In;Na, Won-Min;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.3
    • /
    • pp.35-44
    • /
    • 2007
  • Purpose: This study was conducted to investigate the anti-proliferative effects of Ulmi Pumilae Cortex Extracts(UPCE) on MCF-7(human, breast, adenocaecinoma) and NIH3T3 (human, murine, fibroblast). Methods: MCF-7 cells and NIH3T3 cells were cultured and seeded in cell culture plates, respectively. UPC was extracted with hot water and then further fractionated it into five types: hexane, chloroform, ethyl acetate, butanol, and water soluable fractions. These five different fractions from UPCE were tested for their anti-proliferative effects on MCF-7 cells and NIH3T3 cells by MMT assay. Results: Among the five solvent-fractions of UPCE, n-hexane fraction and ethyl acetate fraction showed a strong anti-proliferative effects on MCF-7 cells but they displayed significant cytotoxicity on NIH3T3 cells, too. On the other hand, chloroform fraction showed a marked anti-proliferative effects on MCF-7 cells and low cytotoxicity on NIH3T3 cells. Conclusion: Chloloform fraction from UPCE showed selective anti-cancer activities on human breast cancer cell MCF-7 relatively to the other fractions.

  • PDF