• Title/Summary/Keyword: Na-Ca exchange

Search Result 243, Processing Time 0.025 seconds

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Biochemical Characters of Polygalacturonase Produced by Botryosphaeria dothidea (사과 겹무늬썩음병균(Botryosphaeria dothidea)이 생산하는 Polygalacturonase의 생화학적 특성)

  • 박석희;서상곤;이창은
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.312-317
    • /
    • 1995
  • The polygalacturonase (PG) production in rotten apples by Botryosphaeria dothidea was purified by using gel filtration and ion exchange column chromatography, and the biochemical characters of PG were investigated. The purified PG appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with approximate molecular weight of 49 kilodalton (kDa). The molecular weight was equal to the native molecular weight estimated by gel filtration. The Km and Vmax values of PG were 0.51 mg/ml and 90.9 $\mu$M/min/ml, respectively. Optimum pH was 4.0~5.0, and the PG activity was stable from pH 5.0~10.0. Optimum temperature of the enzyme activity was 4$0^{\circ}C$. The PG activity was relatively stable at 2$0^{\circ}C$, but it was reduced 45% at 4$0^{\circ}C$ and completely inactivated at 8$0^{\circ}C$. The PG activity was considerably inhibited by Cu2+, Zn2+, SDS and EDTA, whereas it was not effected by Ca2+, K+, Mg2+ or Na+ ions.

  • PDF

A Study on the Preparation of Antibacterial Biopolymer Film

  • Cho, Dong-Lyun;Na, Kun;Shin, Eun-Kyung;Kim, Hyun-JIn;Lee, Ki-Young;Go, Jin-Hwan;Choi, Choon-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • Preparation of antibacterial biopolymer film which is suitable for food packaging film was investigated using K-carrageenan as a base material. K-Carrageenan showed good biodegradability and film-forming characteristic but poor mechanical properties under humid condition. Also, various bacteria grew well on its surface. The poor mechanical properties could be improved by mixing with alginate at a 1:1 ratio and crosslinking with $CaCl_2$ solution. Antibacterial property coul be provided by modifying the K-carrageenan film surface with acrylic acid plasma followed by ion-exchange with $Ag^+$ ions. Such prepared film still showed good biodegradability by various fongi.

  • PDF

Influence of Molten KNO3 Flow Conditions on Mechanical Properties during Fabrication of Chemically-Toughened Glass

  • Kim, Dong-Hwan;Maeng, Jee-Hun;Kim, Dami;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.137-139
    • /
    • 2015
  • In this study, we examined the influence of molten $KNO_3$ flow on mechanical properties and their deviation when a chemical toughening process was applied to soda lime silicate glass ($Na_2O-CaO-SiO_2$). $KNO_3$ melt flow was controlled using three methods: (1) glass tray rotation, (2) impeller stirring, and (3) natural convection. DOL and hardness were found to be enhanced by tray rotation because this rotation was able to maintain the concentration around the glass surface, in contrast to other methods. However, there did not appear to be a statistically significant difference in the 3-point bending strength for the three flow conditions due to the ground edge condition.

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF

The characteristics of premeability and formation of clay cake by electrophoresis technique (전기영동기법에 의한 점토케이크의 형성과 투수특성)

  • Kim, Jong-Yun;Kim, Tae-Ho;Kim, Dae-Ra;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.938-946
    • /
    • 2008
  • This study is on sealing leakage holes where are in landfills to make clay cakes with clay particles, which have a negative surface charge using the method of electrophoresis. Generally, electrophoresis is the motion of charged particles in a colloid under the influence of an electric field; particles with a positive charge go to the cathode and negative to the anode. In this study in order to develop the prevention system of leakages of the leachate in landfills, one-dimensional electrophoresis tests were conducted for determining the properties of the motion of the electrophoresis and cutoff using the method of electrophoresis depending on various the effect factors such as types of clays, concentrations of the clays, and applied electric field. In case of the experiments of determining the optimum clays, Na and Ca-Bentonite, Na and Ca-Montmorillonite, which have greater zeta-potential, cation, exchange capacity as well as ability of cutoff, and Micro-cement inducing cementation were chosen and then the effect of those clays was investigated. Moreover, the properties of the motion and settling of the clays were investigated following electric field varied from 0 to 1V/cm at different concentration of the clays in order to determine both the properties of the motion of the clays and the efficiency of electric field when applying different direct current. Ultimately, the ability of cutoff was examined through measuring the permeability of the clay cakes derived from the one-dimensional electrophoresis tests.

  • PDF

A Study on the Modified Zeolite for the Removal of Calcium Ion in a Potassium Ion Coexistence Solution (칼륨이온 공존 수용액 내 칼슘이온 제거를 위한 제올라이트 개질 연구)

  • Lee, Ye Hwan;Kim, Jiyu;Lee, Ju-Yeol;Park, Byung-Hyun;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.726-730
    • /
    • 2019
  • The removal of calcium ions using zeolite to solve problems of the CaCO3 manufacturing process using cement kiln dust was investigated. To do so, a modified zeolite was employed and experiments were conducted to select the optimal zeolite type considered the binding cation and structure, evaluate the removal performance of calcium ions, the influence of the type and concentration of the modifying solution, and the removal selectivity when K coexists. Among five zeolites, 13X zeolite was found to have the best calcium ion removal performance, and it was confirmed that the removal performance was enhanced when KCl was used as a modifying solution instead of NaCl. This study is expected to be the basis for the solution of carbonation process and high concentration of KCl recovery technology.

Development of Selective Adsorption Process with Various Pore Size A-type Zeolite on Removal of Acetylenes for Isoprene Purification (제올라이트 A를 이용하여 이소프렌에서 아세틸렌 제거를 위한 선택적 흡착공정 개발)

  • Jun, Kyung-Jin;Ahn, Byoung-Sung;Yoo, Kye-Sang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.548-552
    • /
    • 2010
  • This study focused on the development of effective adsorbent to remove acetylenes for the purification of isoprene. The adsorbents with various pore sizes from $4{\AA}$ to $5{\AA}$ were prepared to investigate the effect of pore size on selective adsorption of acetylene as an impurity. The pore size of zeolite A was adjusted by ion-exchange between Na and Ca ions. The pore size of adsorbents has affected the removal of acetylenes selectively because of the kinetic diameter of acetylenes, such as 2-methyl-1-butyne-3-yen (IPA) and 2-butyne. In a batch adsorption experiment, 5A zeolite with pore size of $5{\AA}$ showed the highest removal capacity of 2-butyne. However, IPA was hardly removed from isoprene by the A-type zeolites. For the adsorption isotherm, modified Langmuir model was well fitted with 2-butyne adsorption. Moreover, the regeneration of adsorbent was carried out to determine optimum method. The adsorbent heated for 12 h at $300^{\circ}C$ was regenerated significantly.

Decrease of PEMFC Performance by Ion Contamination (이온 오염에 의한 고분자전해질 연료전지의 성능저하)

  • Song, Jinhoon;Woo, Myungwu;Kim, Saehoon;Ahn, Byungki;Lim, Taewon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.187-190
    • /
    • 2012
  • Contamination of ion from cathode air on the membrane and electrode assembly (MEA) is the serious degradation source in proton exchange membrane fuel cells (PEMFC). In this study, concentration of ions in air at industry region, street and seaside were measured. There were comparably high concentration of $Na^+$, $K^+$, $Ca^{2+}$ and $Fe^{3+}$ in this regions. This paper shows the effects of MEA contamination by these ions generated from humidification water. After 170 hours of fuel cell operation using city water as humidification water, the performance of unit cell decrease to 11% of initial performance. The electrolyte membrane easily absorbed foreign contaminant cations due to the stronger affinity of foreign cations with the sulfonic acid group compared to $H^+$. The contaminant ions existing in the interface between the platinum catalyst and ionomer layer turn out to be the most serious factor to decrease cell performance.

An Investigation of Characteristics of Chinese Bellflower (Platycodon grandiflorum A.) Cultivated Soil

  • Choi, Jang Nam;Lee, Wang Hyu
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.660-666
    • /
    • 2018
  • In order to understand the characteristics of soil according to the cultivation environment of Chinese bellflower (Platycodon grandiflorum A.), soil chemical properties of 12 collected soil samples from 6 cultivated fields in Okcheon, Chungbuk province in August. 2017 were analyzed. The soil pH was distributed within the range of 4.61 to 5.25 at all cultivation years and E.C (Electric Conductivity) and T-N (Total Nitrogen) of the cultivation year were not significant. Available $P_2O_5$ was higher than the average for medicinal crops and P. grandiflorum in Korea and C.E.C (Cation Exchange Capacity) was inconsistent for each cultivation year. In particularly, it was validated that the content of exchangeable cations K, Ca, Ma, and Na in this experiment was similar to that of C.E.C according to the cultivation years, because C.E.C had a high correlation with the exchangeable cations. For the available $P_2O_5$, as affected by trans-planting, 5Y-NT-H (cultivated 5 years and non-transplanted) had 58 mg/kg, while 5Y-T-H (cultivated 5 years and transplanted) had 246 mg/kg. The soil pH was found to be lower (acidic) in diseased soils than healthy soils. E.C was confirmed to be was higher in diseased soils than healthy soils except for the one cultivated for 2 years. The contents of T-N and available $P_2O_5$ were higher in diseased soil except for the one cultivated for 5 years and 11 years. The exchangeable cation K and Na tended to be higher in diseased soils rather than that in healthy soils, and the exchangeable cation Ca and Mg contents were higher in healthy soils than in diseased soils. The C.E.C of the soil was lower than that of healthy soils in all of the years except for the one which was cultivated for 5 years (transplanted).