• Title/Summary/Keyword: Na-형

Search Result 1,830, Processing Time 0.03 seconds

Occurrences and Physicochemical Properties of Japanese Bentonite Deposits (일본 벤토나이트 광상의 부존특성 및 광석의 물리화학적 특성)

  • Song Min-Sub;Koh Sang-Mo;Takagi Tetsuichi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.245-265
    • /
    • 2004
  • This study was to compare the geological occurrences and geneses of the Myogi, Tsukinuno, Dobuyama and Kawasaki bentonite deposits distributed in the Tertiary sedimentary basins of NE Japan, and to compare the mineralogical and physicochemical properties of their bentonites. The Japanese bentonite deposits are mainly distributed in the Green-tuff region which was formed in Neogene. The shape of ore body of the Myogi, Tsukinuno and Kawasaki deposits formed by the diagenesis are layered and stratiform. In contrast to this, the Dobuyama deposit formed by hydrothermal alteration shows the cone shape. The mineralization age of four deposits are 1.8 ~ 21 Ha from Early Miocene to Pliocene. The Dobuyama bentonite with the highest montmorillonite content shows the highest surface area, CEC, MB adsorption, and strengths. The Tsukinuno bentonite with a little high montmorillonite content is characterized by strong alkalinity, high viscosity and swelling. The Kawasaki bentonite, the Na-Ca mixed type, shows higher viscosity and swelling than the Ca-type Dobuyama bentonite. The Myogi bentonite with the lowest montmorillonite content shows the properties of low viscosity, In adsorption, strengths and a little high CEC and surface area. The high CEC and surface area of this deposit is due to the sufficient occurrence of zeolite. A strong dispersion in the Na-type bentonite and a strong flocculation in the Ca-type bentonite took place, and both the types show a slow flocculation with time. The physicochemical properties of the bentonite are mainly controlled by the montmorillonite content, interlayer cations, and impurity minerals such as zeolite. But bentonites inconsistent to this factors are sometimes occurred. This is maybe due to the crystal chemistry such as layer charge of montmorillonite and crystal morphology of montmorillonite such as aspect ratio.

Phase Equilibria and Formation Behaviors of Methane Hydrate with Ethylene Glycol and Salts (에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동)

  • Kim, Dong Hyun;Park, Ki Hun;Cha, Minjun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.635-641
    • /
    • 2020
  • In this study, phase equilibria and formation behaviors of methane hydrate containing mono-ethylene glycol (MEG) and salts (sodium chloride, NaCl; sodium bromide, NaBr; sodium iodide, NaI) are investigated. Equilibrium conditions of methane hydrate containing MEG and salts are measured in a temperature range 272~283 K and a pressure range 3.5~11 MPa. Hydrate inhibition performance in the presence of additives can be summarized as follows: methane hydrate containing (5 wt% NaCl + 10 wt% MEG) > (5 wt% NaBr + 10 wt% MEG) > (5 wt% NaI + 10 wt% MEG). Formation behaviors of methane hydrate with MEG and salts are investigated for analyzing the induction time, gas consumption amount and growth rate of methane hydrates. There are no significant changes in the induction time during methane hydrate formation, but the addition of MEG and salts solution during hydrate formation can affect the gas consumption amount and growth rate.

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Effect of NaCl Treatment on Absorption of Inorganic Nutrient and Growth in Rice (NaCl 처리가 벼의 무기성분 흡수 및 생육에 미치는 영향)

  • 정진일;고종철;이승엽;권태오;이동진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.465-468
    • /
    • 2003
  • In order to find out the basic information for salt tolerance in vice (Oryza sativa L.), effects of NaCl treatment on absorption of inorganic components and growth were investigated in 6 japonica and 5 tongil varieties and compared to the salt tolerance variety, Annapurna. The absorption of N and $\textrm{P}_2\textrm{O}_5$ was less repressed than that of $\textrm{K}_2\textrm{O}$, MgO, CaO, and $\textrm{Si}\textrm{O}_2$ which were a little affected by NaCl treatment. $\textrm{K}_2\textrm{O}$ was the most highly repressed component in the absorption of inorganic components, followed by MgO, CaO, total-N, $\textrm{P}_2\textrm{O}_5$ and $\textrm{Si}\textrm{O}_2$. $\textrm{Na}_2\textrm{O}$ content was increased about twenty times to the control at 30days after NaCl treatment, and tonsil varieties more than absorbed japonica ones. Dry weight of japonica varieties by NaCl treatment was less reduced than that of tonsil varieties, followed by Seomjinbyeo, Sinseonchalbyeo, Nakdongbyeo, Daechoungbyeo, Dongjinbyeo and Chuchoungbyeo in japonica group, and Milyang30, Gayeabyeo, Jangseongbyeo, Chilseongbyeo and Taebackbyeo in tonsil group. The relationship between dry weight reduction and Na/K ratio showed positively significant correlation in rice.

X-ray and Electron Diffraction Study of Cellulose Crystal Structures (X선 및 전자선회절법에 의한 천연셀룰로오스의 결정구조 해석)

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.72-79
    • /
    • 1996
  • Cellulose I에서 Cellulose II로의 결정변태기구를 X선 및 전자선 회절법과 현미경적 방법을 이용하여 구명하였다. X선 회절 결과, Na-cellulose I을 고온에서 수세할 경우 Cellulose I과 Cellulose II의 혼합형 회절도가, 저온에서 수세할 경우 Na-cellulose IV의 회절도가 얻어졌다. 전자선회절 결과, 고온수세의 시료는 Cellulose I과 Cellulose II의 혼합형이 저온수세의 시료는 Cellulose II의 회절도가 얻어졌다. 또한 고온수세 시료의 전자선회절도로부터 섬유벽의 내측부가 외측부보다 재생 Cellulose I의 양이 많은 것이 확인되었다. 따라서 알칼리 팽윤시 섬유벽내에는 불완전한 팽윤이 발생하는데 그 정도는 내측부가 더욱 심한 것으로 생각된다. 이때 형성되는 불완전한 Na-cellulose I 은 고온 수세의 경우는 탈수에 의해 Cellulose I로, 저온수세의 경우는 수화에 의해 Cellulose II로 변태되지만 완전히 팽윤된 Na-cellulose I은 Cellulose I로 재생될 수 없는 것으로 생각된다. 현미경적 실험결과, mercerization과정에서 cellulose 분자쇄의 packing이나 conformation의 변화와 관련하여 microfibril 의 흐트러짐은 발생하지 않는 것으로 생각되었다.

  • PDF

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.