• Title/Summary/Keyword: Na Metal

Search Result 1,289, Processing Time 0.031 seconds

Sonochemical Synthesis of UiO-66 for CO2 Adsorption and Xylene Isomer Separation (초음파 합성법을 이용한 UiO-66의 합성 및 이산화탄소 흡착/자일렌 이성체 분리 연구)

  • Kim, Hee-Young;Kim, Se-Na;Kim, Jun;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.470-475
    • /
    • 2013
  • Zr-benzendicarboxylate structure, UiO-66 was prepared in 1-L batch scale by using a unique sonochemical-solvothermal combined synthesis method. The produced UiO-66 showed uniform particles of ca. $0.2{\mu}m$ in size with the BET surface area of $1,375m^2/g$ in high product yield (>95%). The UiO-66 showed 198 and 84 mg/g $CO_2$ adsorption capacity at 273 K and 298 K, respectively, with excellent $CO_2$ selectivity ($CO_2:N_2=32:1$) at ambient conditions. The isosteric heat of $CO_2$ adsorption varied from 33 to 25 kJ/mol as the adsorption progressed. The UiO-66 tested for xylene isomer separation in a liquid-phase batch mode confirmed preferential adsorption of the adsorbent for o-xylene over m-, and p-xylene.

Preparation of Antibacterial Agent using Alginate and Its Antibacterial Effect (알긴산염을 이용한 항균제의 제조 및 항균효과)

  • 이학성;서정호
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.63-67
    • /
    • 2002
  • Silver-alginate and copper-alginate were prepared with Na-alginate extracted from marine brown algae(Sargassum fluitans). The antibacterial effect of Ag-alginate or Cu-alginate against Staphylococcus aureus and Escherichia coli was carried out by measuring optical density of liquid culture at 600 nm. The cell growth of Staphylococcus aureus and Escherichia coli was very active at pH 7, and was inhibited by adding Ag-alginate with more than 0.006 wt.% of silver content. The antibacterial effect of Ag-alginate against S. aureus and E. coli was better than that of Cu-alginate at the same metal concentration. The cell growth of S. aureus was less inhibitory than E. coli at the same concentration of Ag-alginate. The cell growth of S. aureus and E. coli was also influenced by the characteristics of counter ion of silver.

Chemical properties of liquid swine manure for fermentation step in public livestock recycling center

  • Lee, Dong Sung;Lee, Jae-Bong;Lee, Myoung-Yun;Joo, Ri-Na;Lee, Kyo-Suk;Min, Se-Won;Hong, Byeong-deok;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.424-431
    • /
    • 2016
  • The nutrients in livestock manure produced during fermentation processes in public livestock recycling centers are used as fertilizers. However, the large amounts of swine manure produced in intensive livestock farms can be a nonpoint source of pollution. In this experiment, we investigated the chemical properties, inorganic components, and heavy metal contents in 101 samples of liquid swine manure collected from 28 public livestock recycling centers throughout the nation. Results showed that the average pH of the samples was alkaline (pH range 5.18 to 9.54), and their maximum EC was $53.2dS\;m^{-1}$. The amounts of total nitrogen and total phosphorus were in the range of 1000 - 2000 and $200-800mg\;L^{-1}$ while potassium, which constituted 47% of the total inorganic ions recovered from the liquid swine manure, amounted to $1500mg\;L^{-1}$. The most distinctive heavy metals recovered from the liquid swine manure were copper and zinc although the amounts of both heavy metals were much lesser than those of the standards as livestock liquid fertilizer set by the Rural Development Administration. On the other hand, the amount of nitrogen decreased rapidly with an increasing fermentation period from immature to mature, assumed to be lost as volatile compounds, such as ammonia, which are the major odor components during the fermentation process.

Fracture Resistance and Stress Distribution of All Ceramic Crowns with Two Types of Finish Line on Maxillary First Premolar (상악 제1소구치에서 전부도재관의 finish line 형태에 따른 파절강도와 응력 분포에 관한 연구)

  • Lee, Sang-Kwon;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.219-237
    • /
    • 2003
  • he purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown, and 0.5mm width chamfer finish lines on the maxillary first premolar. 30 sound maxillary first premolars were selected and then storaged in 5% NaOCl and saline. 15 teeth were performed preparation for each group(1.0mm rounded shoulder, 0.5mm chamfer). After 30 stone dies were made for each group, the IPS Empress ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the natural teeth. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co., Germany)was used to measure the fracture strength, with stress loading on the occlusal surface between buccal and lingual cusp. And also, three-dimensional finite element model was used to measure the stress distribution with two types of the finish lines(1.0mm rounded shoulder, 0.5mm chamfer) and two loading conditions(both buccal and lingual cusp inclination, lingual cusp inclination only). The result of the this study were as follows. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(842N) showed higher value than that of the chamfer(590N) (p<0.05). In the three dimensional finite element analysis of all ceramic crown, metal die and natural teeth model did not show any differences in stress distribution between finish lines. Generally, when force was loaded on the occlusal inclination of buccal and lingual cusp, the stress was concentrated on the loading point and the central groove of occlusal surface. When force was loaded only on the occlusal inclination of lingual cusp, the stress was concentrated on the lingual finish line and loading point.

Photoelectrochemical Behaviour of Oxide Films on Ti-Ga2O3 Alloy (Ti-Ga 합금 위에 형성된 산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk;Lee, Eung-Cho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 1992
  • With the aim to obtain $TiO_2$ films with an increased photorespones and absorbance in the visible region of the solar spectrum, the direct oxidation of titanium alloys were performed. In this study, $Ti-Ga_2O_3$ alloy was prepared by mixing, pressing and arc melting of appropriate amounts of titanium and $Ga_2O_3$ powder. Electrochemical measurements were performed in three electrode cell using electrolyte of 1M NaOH solution. The oxide films on $Ti-Ga_2O_3$ alloy was composed of $Ti_2O$, TiO, $TiO_2$, $Ga_2TiO_5$. The free energy efficiency (${\eta}e$) of $Ti-Ga_2O_3$ oxide films had 0.8~1.3 % and were increased with the increase of $Ga_2O_3$ content up to 10wt %. The onset potential ($V_{on}$) had -0.8V~0.9V ranges and were shifted to anodic direction with the increase of $Ga_2O_3$ content. The spectral response of Ti-$Ga_2O_3$ oxides were similar to the response of the $TiO_2$ and their $E_g$ were observed to 2.90~3.0eV. Variations of onset potential($V_{on}$) associated with electrolyte pH were -59mV/pH. This probably reflects the nature of the bonding of $OH^-$ ion to the $TiO_2$ surface, a common phenomena in the transition-metal oxides.

  • PDF

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Estimation of Mercury Emission from Major Sources in Annex D of Minamata Convention and Future Trend (국내 비의도적 주요 배출원의 지역별 수은 대기 배출량 산정 및 미래 활동도 변화와 최적가용기술 적용 시 배출량 추이)

  • Sung, Jin-Ho;Oh, Joo-Sung;Back, Seung-Ki;Jeong, Bup-Mook;Jang, Ha-Na;Seo, Yong-Chil;Kim, Seong-Heon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.193-207
    • /
    • 2016
  • This study discusses the present status of mercury emission and distribution from major anthropogenic sources in Korea and the future trend of mercury emission by activity changes and application of BATs. Atmospheric mercury emission from major anthropogenic sources based on Annex D of Minamata convention was estimated to around 4.89 tonne in 2012. Emission ratios of cement clinker production, coal-fired power plant, waste incineration and non-ferrous metal smelting were 68.68%, 24.75%, 6.29% and 0.28%, respectively. High mercury emission regions were characterized by the presence of cement clinker production facilities and coal-fired power plants. Prediction of future activities was carried out by linear regression of the previous year data. The (total) mercury emission was estimated to decrease up to 48% Under the scenario of BATs to be applied and the change of future activities. Emissions from coal-fired powerplants and cement clinkers were expected to decrease significantly.

A study on the highly sensitive metal nanowire sensor for detecting hydrogen (수소감지를 위한 고감도의 금속 나노선 센서에 관한 연구)

  • An, Ho-Myoung;Seo, Young-Ho;Yang, Won-Jae;Kim, Byungcheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2197-2202
    • /
    • 2014
  • In this paper, we report on an investigation of highly sensitive sensing performance of a hydrogen sensor composed of palladium (Pd) nanowires. The Pd nanowires have been grown by electrodeposition into nanochannels and liberated from the anodic aluminum oxide (AAO) template by dissolving in an aqueous solution of NaOH. A combination of photo-lithography, electron beam lithography and a lift-off process has been utilized to fabricate the sensor using the Pd nanowire. The hydrogen concentrations for 2% and 0.1% were obtained from the sensitivities (${\Delta}R/R$) for 1.92% and 0.18%, respectively. The resistance of the Pd nanowires depends on absorption and desorption of hydrogen. Therefore, we expect that the Pd nanowires can be applicable for detecting highly sensitive hydrogen gas at room temperature.

Degradation of Organic Component in MSW by Super-heated Steam (과열(過熱) 증기(蒸氣)를 이용한 국내 폐기물(廢棄物) 유기성(有機性) 성분의 분해(分解) 특성 연구)

  • Kim, Woo-Hyun;Roh, Seon-Ah;Min, Tai-Jin;Sung, Hyun-Je;Park, Seong-Bum;Jang, Ha-Na
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.10-17
    • /
    • 2009
  • Degradation of the organic component in the waste were carried out by superheated steam in a pressurized vessel. The effects of waste characteristics, reaction temperature and residence time on the degradation rate have been determined. The biodegradable organic components such as food and paper waste have been degraded, and plastics, wood and metal were remained without degradation. The degradation efficiency is decided by the desizing rate of the waste, and the waste mixture with 23% biodegradable organic component shows higher desizing rate than that of the 43% of the biodegradable organic component in a short residence time and the desizing rate is found to be 90% in the maximum condition.

Characteristics Comparison of Prepared Films According to Influence of Adsorption Inhibitor in the Condition of Deposition (PVD증착용 흡착인히비터의 영향에 따른 제작막의 특성 비교)

  • 이찬식;윤용섭;권식철;김기준;이명훈
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.67-67
    • /
    • 2001
  • The structure zone model has been used to provide an overview of the relationship between the microstructure of the films deposited by PVD and the most prominent deposition condition.s. B.AMovchan and AV.Demchishin have proposed it firstls such model. They concluded that the general features of the resulting structures could be correlated into three zones depending on $T/T_m$. Here T m is the melting point of the coating material and T is the substrate temperature in kelvines. Zone 1 ($T/Tm_) is dominated by tapered macrograins with domed tops, zone 2 ($O.3) by columnar grains with denser boundaries and zone 3 ($T/T_m>O.5$) by equiaxed grains formed by recrystallization. J.AThomton has extended this model to include the effect of the sputtering gas pressure and found a fourth zone termed zone T(transition zone) consisting of a dense array of poorly defined fibrous grains. R.Messier found that the zone I-T boundary (fourth zone of Thorton) varies in a fashion similar to the film bias potential as a function of gas pressure. However, there has not nearly enough model for explaining the change in morphology with crystal orientation of the films. The structure zone model only provide an information about the morphology of the deposited film. In general, the nucleation and growth mechanism for granular and fine structure of the deposited films are very complex in an PVD technique because the morphology and orientation depend not only on the substrate temperature but also on the energy of deposition of the atoms or ions, the kinetic mechanism between metal atoms and argon or nitrogen gas, and even on the presence of impurities. In order to clarify these relationship, AI and Mg thin films were prepared on SPCC steel substrates by PVD techniques. The influence of gas pressures and bias voltages on their crystal orientation and morphology of the prepared films were investigated by SEM and XRD, respectively. And the effect of crystal orientation and morphology of the prepared films on corrosion resistance was estimated by measuring polarization curves in 3% NaCI solution.

  • PDF