• Title/Summary/Keyword: N_2gas

Search Result 3,470, Processing Time 0.034 seconds

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

N2O and CH4 Emission from Upland Forest Soils using Chamber Methods (플럭스챔버에 의한 N2O와 CH4의 산림에서의 토양배출량 측정연구)

  • Kim, Deug-Soo;Kim, Soyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.789-800
    • /
    • 2013
  • $N_2O$ and $CH_4$, Greenhouse gas emission, Forest soil, Closed chamber technique, Soil uptake $N_2O$ and $CH_4$ are important greenhouse gases (GHG) along with $CO_2$ influencing greatly on climate change. Their soil emission rates are highly affected by bio-geo-chemical processes in C and N through the land-atmosphere interface. The forest ecosystems are generally considered to be net emission for $N_2O$; however, net sinks for $CH_4$ by soil uptake. Soil $N_2O$ and $CH_4$ emissions were measured at Mt. Taewha in Gwangju, Kyeonggi, Korea. Closed chamber technique was used for surface gas emissions from forest soil during period from May to October 2012. Gas emission measurement was conducted mostly on daytime (from 09:00 to 18:00 LST) during field experiment period (total 25 days). The gas samples collected from chamber for $N_2O$ and $CH_4$ were analyzed by gas chromatography. Soil parameters were also measured at the sampling plot. GHG averages emissions during the experimental period were $3.11{\pm}16.26{\mu}g m^{-2}hr^{-1}$ for $N_2O$, $-1.36{\pm}11.3{\mu}gm^{-2}hr^{-1}$ for $CH_4$, respectively. The results indicated that forest soil acted as a source of $N_2O$, while it acted like a sink of $CH_4$ on average. On monthly base, means of $N_2O$ and $CH_4$ flux during May (spring) were $8.38{\pm}48.7{\mu}gm^{-2}hr^{-1}$, and $-3.21{\pm}31.39{\mu}gm^{-2}hr^{-1}$, respectively. During August (summer) both GHG emissions were found to be positive (averages of $2.45{\pm}20.11{\mu}gm^{-2}hr^{-1}$ for $N_2O$ and $1.36{\pm}9.09{\mu}gm^{-2}hr^{-1}$ for $CH_4$); which they were generally released from soil. During September (fall) $N_2O$ and $CH_4$ soil uptakes were observed and their means were $-1.35{\pm}12.78{\mu}gm^{-2}hr^{-1}$ and $-2.56{\pm}11.73{\mu}gm^{-2}hr^{-1}$, respectively. $N_2O$ emission was relatively higher in spring rather than other seasons. This could be due to dry soil condition during spring experimental period. It seems that soil moisture and temperature mostly influence gas production and consumption, and then emission rate in subsoil environment. Other soil parameters like soil pH and chemical composition were also discussed with respect to GHG emissions.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction (p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가)

  • Yang, Yijun;Maeng, Bohee;Jung, Dong Geon;Lee, Junyeop;Kim, Yeongsam;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

Studies on Film Growth and Mechanical Properties of TiN by Chemical Vapor Deposition (화학증착에 의한 TiN 박막의 제조 및 기계적 성질에 관한 연구)

  • 김시범;김광호;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • Titanium Nitride (TiN) was deposited onto the SKH9 tool steels by chemical vapor deposition (CVD) using a gaseous mixture of TiCl4, N2, and H2. The effects of the deposition temperature and input gas composition on the deposition rate, microstructure, preferred orientation, microhardness and wear resistance of TiN deposits were studied. The experimental results showed that the TiN deposition is thermally activated process with an apparent activation energy of about 27Kcal/mole in the temperature range between 1200$^{\circ}$K and 1400$^{\circ}$K. As H2/N2 gas input ratio increased, the deposition rate increased, showed maximum at H2/N2 gas input ratio of 1.5 and then decreased. Mechanical properties such as microhardness and wear resistance have close relation with the microstructure and preferred orientation of TiN deposits. It is suggested that the equiaxed structure with random orientation increases the microhardness and wear resistance of TiN deposits.

  • PDF

Development of Selective GaN etching Process for p-GaN/AlGaN/GaN E-mode FET Fabrication (p-GaN/AlGaN/GaN E-mode FET 제작을 위한 선택적 GaN 식각 공정 개발)

  • Jang, Won-Ho;Cha, Ho-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.321-324
    • /
    • 2020
  • In this work, we developed a selective etching process for GaN that is a key process in p-GaN/AlGaN/GaN enhancement-mode (E-mode) power switching field-effect transistor (FET) fabrication. In order to achieve a high current density of p-GaN/AlGaN/GaN E-mode FET, the p-GaN layer beside the gate region must be selectively etched whereas the underneath AlGaN layer should be maintained. A selective etching process was implemented by oxidizing the surface of the AlGaN layer and the GaN layer by adding O2 gas to Cl2/N2 gas which is generally used for GaN etching. A selective etching process was optimized using Cl2/N2/O2 gas mixture and a high selectivity of 53:1 (= GaN/AlGaN) was achieved.

The Characteristic and Formation of Ti(B,N) Films on Steel by EA Hot Filament CVD (EA hot filament CVD system을 이용하여 금형공구강에 증착한 Ti(B,N)박막의 합성과 특성에 관하여)

  • Yoon, Jung-H.;Choi, Yong;Choe, Jean-I.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.585-589
    • /
    • 2012
  • The characteristics of interface layer and the effect of mole fraction of inlet gas mixture($B_2H_6/H_2/N_2/TiCl_4$) on the microstructure of Ti(B,N) films were studied by microwave plasma hot filament CVD process. Ti(B,N) films were deposited on a substrate(STD-61) to develop a high performance of resistance wear coating tool. Ti(B,N) films were obtained at a gas pressure of 1 torr, bias voltage of 300 V and substrate temperature of $480^{\circ}C$ in $B_2H_6/H_2/N_2/TiCl_4$gas system. It was found that TiN, $TiB_2$, TiB and hexagonal boron nitride(h-BN) phases exist in thin layer on the STD-61.

대기압 플라즈마 표면 처리를 이용한 금속과 폴리이미드 필름의 접촉력 향상에 관한 연구

  • O, Jong-Sik;Park, Jae-Beom;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.264-264
    • /
    • 2011
  • Poly [(N, N'-oxydiphenylene) pyromellitimide], polyimide (PI) film은 기계적 강도가 매우 우수하고 열적, 화학적 안정성이 뛰어난 재료로서 전자제품의 소형화, 경령화, 고성능화를 위한 차세대 flexible electronic device에 적용하기 위하여 많은 연구가 진행되고 있다. 그러나 PI의 특성상, 매우 낮은 표면에너지로 인해 금속과의 접촉력이 좋지 않은 단점을 가지고 있다. 본 연구에서는, 금속박막과 PI film 과의 접촉력을 증가시키기 위해 remote-type modified dielectric barrier discharge (DBD) module을 이용하여 대기압 플라즈마 표면처리를 하였다. 실험에 사용된 gas composition은 각각 $N_2$/ He/ $SF_6$, $N_2$/ He/ $O_2$, $N_2$/ He/ $SF_6$/ $O_2$, $N_2$/ He/ $SF_6$/ $O_2$ 이다. $N_2$/ He/ $SF_6$/ $O_2$ gas composition을 이용하여 PI 표면을 플라즈마 처리한 경우, C=O 결합이 PI film 위에 생성됨으로써, 접촉각이 매우 낮게 형성됨을 관찰할 수 있었다. 이와는 반대로 $N_2$/ He/ $SF_6$ gas composition 을 사용하였을 경우에는 C-Fx 화학적 결합이 생성되기 때문에 가장 높은 접촉각이 형성됨을 관찰할 수 있었다. 특히, $N_2$ (40 slm)/ He (1 slm)/ $SF_6$ (1.2 slm) gas composition에 $O_2$ gas를 0.2 slm부터 1.0 slm까지 변화시켜가며 PI film 표면을 처리한 결과, $O_2$ gas를 0.9 slm 첨가하였을 때, 가장 낮은 $9.3^{\circ}$의 접촉각을 얻을 수 있었다. 이는 0.9 slm의 $O_2$ gas를 첨가하였을 때, 가장 많은 양의 $O_2$ radical이 생성되기 때문에 많은 양의 C=O 결합이 생성되기 때문이다. 최적화된 $N_2$ (40 slm)/ He (1 slm)/ $SF_6$ (1.2 slm)/ $O_2$ (0.9 slm) gas composition 조건에서 Ag film과 PI film과의 접촉력을 관찰할 결과, 111 gf/mm를 얻을 수 있었다.

  • PDF

The Effect of Post Oxidation on Corrosion Characteristics of Gas Nitrocarburised Carbon Steels (Nitrocarburising 처리된 탄소강의 내식특성에 미치는 Post Oxidation 효과)

  • Kim, Y.H.;Jung, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The effect of post oxidation, water-quenched after holding in air for 5~420 seconds or cooling or furnace cooling, on corrosion resistance and phase formation characteristics of the surface layer of SM20C and SM45C carbon steels after gas nirtrocarbursing in the $NH_3-5%CO_2-N_2$ gas atmosphere at $580^{\circ}C$ for 3hours is studied. The compound layers of two steels consist of ${\varepsilon}-Fe_{2-3}N$, ${\gamma}^{\prime}-Fe_4N$ and $Fe_3O_4$, phases, however, the quantity of ${\gamma}^{\prime}-Fe_4N$ phase increases for the furnace cooled specimen compared to that of air cooling specimen. With increasing $NH_3$ content in the gas mixture and also increasing the keeping time in the air after gas nitrocarburising, the ${\varepsilon}-Fe_{2-3}N$ phase of compound layer increases, while the decreased current density recognizing the improvement of corrosion resistance are shown. the passive current density of SM45C steel is lower than that of SM20C steel at the same nitrocarburising conditions.

  • PDF