• Title/Summary/Keyword: NWP(Numerical Weather Prediction)

Search Result 55, Processing Time 0.022 seconds

Estimation of High-resolution Sea Wind in Coastal Areas Using Sentinel-1 SAR Images with Artificial Intelligence Technique (Sentinel-1 SAR 영상과 인공지능 기법을 이용한 연안해역의 고해상도 해상풍 산출)

  • Joh, Sung-uk;Ahn, Jihye;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1187-1198
    • /
    • 2021
  • Sea wind isrecently drawing attraction as one of the sources of renewable energy. Thisstudy describes a new method to produce a 10 m resolution sea wind field using Sentinel-1 images and low-resolution NWP (Numerical Weather Prediction) data with artificial intelligence technique. The experiment for the South East coast in Korea, 2015-2020,showed a 40% decreased MAE (Mean Absolute Error) than the generic CMOD (C-band Model) function, and the CC (correlation coefficient) of our method was 0.901 and 0.826, respectively, for the U and V wind components. We created 10m resolution sea wind maps for the study area, which showed a typical trend of wind distribution and a spatially detailed wind pattern as well. The proposed method can be applied to surveying for wind power and information service for coastal disaster prevention and leisure activities.

A Comparison of Observed and Simulated Brightness Temperatures from Two Radiative Transfer Models of RTTOV and CRTM (두 복사전달모델 RTTOV와 CRTM으로부터 산출된 밝기온도와 관측된 밝기온도의 비교)

  • Kim, Ju-Hye;Kang, Jeon-Ho;Lee, Sihye
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The radiative transfer for TIROS operational vertical sounder (RTTOV) and the community radiative transfer model (CRTM) are two fast radiative transfer models (RTM) that are used as observation operators in numerical weather prediction (NWP) systems. This study compares the basic structure and input data of the two models. With data from Advanced Microwave Sounding Unit-A (AMSU-A), which has channels of various frequencies, observed brightness temperature ($T_B$) and simulated $T_B$s from the two models are compared over the ocean surface in two cases-one where cloud information is included and the other without it. Regarding AMSU-A sounding channels (5-14), the two models produce no large significant differences in their calculated $T_B$, but RTTOV produces smaller first guess (FG) departures (i.e., better results) in window and near-surface sounding channels than does CRTM. When adding cloud water and ice particles from Unified Model (UM), the $T_B$ bias between observations and simulations are reduced in both models and the bias at 31.4 and 89 GHz is substantially decreased in CRTM compared to those of RTTOV.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction (인공신경망과 중규모기상수치예보를 이용한 강수확률예측)

  • Kang, Boosik;Lee, Bongki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.485-493
    • /
    • 2008
  • The Artificial Neural Network (ANN) model was suggested for predicting probability of precipitation (PoP) using RDAPS NWP model, observation at AWS and upper-air sounding station. The prediction work was implemented for flood season and the data period is the July, August of 2001 and June of 2002. Neural network input variables (predictors) were composed of geopotential height 500/750/1000 hPa, atmospheric thickness 500-1000 hPa, X & Y-component of wind at 500 hPa, X & Y-component of wind at 750 hPa, wind speed at surface, temperature at 500/750 hPa/surface, mean sea level pressure, 3-hr accumulated precipitation, occurrence of observed precipitation, precipitation accumulated in 6 & 12 hrs previous to RDAPS run, precipitation occurrence in 6 & 12 hrs previous to RDAPS run, relative humidity measured 0 & 12 hrs before RDAPS run, precipitable water measured 0 & 12 hrs before RDAPS run, precipitable water difference in 12 hrs previous to RDAPS run. The suggested ANN has a 3-layer perceptron (multi layer perceptron; MLP) and back-propagation learning algorithm. The result shows that there were 6.8% increase in Hit rate (H), especially 99.2% and 148.1% increase in Threat Score (TS) and Probability of Detection (POD). It illustrates that the suggested ANN model can be a useful tool for predicting rainfall event prediction. The Kuipers Skill Score (KSS) was increased 92.8%, which the ANN model improves the rainfall occurrence prediction over RDAPS.

Improvements for Atmospheric Motion Vectors Algorithm Using First Guess by Optical Flow Method (옵티컬 플로우 방법으로 계산된 초기 바람 추정치에 따른 대기운동벡터 알고리즘 개선 연구)

  • Oh, Yurim;Park, Hyungmin;Kim, Jae Hwan;Kim, Somyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.763-774
    • /
    • 2020
  • Wind data forecasted from the numerical weather prediction (NWP) model is generally used as the first-guess of the target tracking process to obtain the atmospheric motion vectors(AMVs) because it increases tracking accuracy and reduce computational time. However, there is a contradiction that the NWP model used as the first-guess is used again as the reference in the AMVs verification process. To overcome this problem, model-independent first guesses are required. In this study, we propose the AMVs derivation from Lucas and Kanade optical flow method and then using it as the first guess. To retrieve AMVs, Himawari-8/AHI geostationary satellite level-1B data were used at 00, 06, 12, and 18 UTC from August 19 to September 5, 2015. To evaluate the impact of applying the optical flow method on the AMV derivation, cross-validation has been conducted in three ways as follows. (1) Without the first-guess, (2) NWP (KMA/UM) forecasted wind as the first-guess, and (3) Optical flow method based wind as the first-guess. As the results of verification using ECMWF ERA-Interim reanalysis data, the highest precision (RMSVD: 5.296-5.804 ms-1) was obtained using optical flow based winds as the first-guess. In addition, the computation speed for AMVs derivation was the slowest without the first-guess test, but the other two had similar performance. Thus, applying the optical flow method in the target tracking process of AMVs algorithm, this study showed that the optical flow method is very effective as a first guess for model-independent AMVs derivation.