1차년도에는 햅틱 시나리오의 비주얼 쓰레드로서의 환경을 구축하여 햅틱 렌더링과 그래픽 렌더링의 연동을 위한 연구를 수행하였고 햅틱 장비로부터 오는 다양한 데이터 처리를 위한 데이터 로딩 기법을 연구하고 이를 멀티 코어 CPU를 이용하여 단일 조명상에서 광선 추적하는 알고리즘을 개발하였다. 당해연도에는 1Khz 의 속도를 가진 햅틱 렌더링과의 불연속성을 해결하기 위하여 GPU를 이용한 보다 빠른 고품질의 광선 추적 알고리즘을 개발하고자 한다. 이를 위하여 NVIDIA의 범용 솔루션인 CUDA를 통해 병렬 처리를 통해 실시간으로 다중 광원을 가진 Dynamic한 장면을 갱신할 수 있도록 한다. 또한 심장, 폐, 간과 같은 반투명한 재질을 가진 신체 장기 표현을 위해 각 재질에 맞는 양방향의 표면 내부 산란 분포함수를 간략화하여 차후 년도의 연구에 반영한다.
We set up a project to make spectrometers for single dish observations of the Korean VLBI Network (KVN), a new future multi-beam receiver of the ASTE (Atacama Submillimeter Telescope Experiment), and the total power (TP) antennas of the Atacama Large Millimeter/submillimeter Array (ALMA). Traditionally, spectrometers based on ASIC (Application-Specific Integrated circuit) and FPGA (Field-Programmable Gate Array) have been used in radio astronomy. It is, however, that a Graphics Processing Unit (GPU) technology is now viable for spectrometers due to the rapid improvement of its performance. A high-resolution spectrometer should have the following functions: poly-phase filter, data-bit conversion, fast Fourier transform, and complex multiplication. We wrote a program based on CUDA (Compute Unified Device Architecture) for a GPU spectrometer. We measured its performance using two GPU cards, Titan X and K40m, from NVIDIA. A non-optimized GPU code can process a data stream of around 2 GHz bandwidth, which is enough for the KVN spectrometer and promising for the ASTE and ALMA TP spectrometers.
본 논문에서는 GPU를 이용한 고속 보간법 개발방법에 대해 제안한다. GPU는 흔히 그래픽 연산에 사용되지만 최근에는 GPGPH가 각광을 받고 있다. 특히 NVIDIA에서 발표한 CUDA를 이용하면 GPU를 쉽게 접근하여 프로세싱 할 수 있어 많은 분야에서 GPU를 활용하고 있다. 본 논문에서는 실제 CUDA를 이용하여 여러 가지 보간법에 대한 알고리즘을 구현하여 CUDA의 성능을 확인하였다. CPU에서 구현한 알고리즘과 CUDA를 이용한 알고리즘을 비교했을 때 메모리 할당 및 전송부분을 제외한 수순 프로세싱 시간을 보면 CPU에서 훨씬 좋은 성능을 나타내었고, 메모리 할당 및 전송을 고려했을 때 작은 사이즈 영상에서는 오히려 역효과가 나타났고, 대용량 영상에서는 좋은 성능을 나타냄을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.7-8
/
2017
최근 ARM 프로세서의 가상화 확장 기술을 이용하는 임베디드 시스템에서 다종의 OS 작동을 지원하는 하이퍼바이저가 많이 개발되었다. 가상화 기술은 하드웨어 자원을 효과적으로 사용한다는 이점이 있지만, RTOS를 작동시킬 경우 하이퍼바이저의 오버헤드에 의해 RTOS의 성능이 저하될 수 있는 문제가 발생한다. 본 논문에서는 가상화 기술을 지원하는 ARMv7 Cortex-A15 프로세서를 탑재한 NVidia Jetson TK-1 임베디드 보드에서 RTOS가 단독으로 작동했을 때의 성능과 QPlus Hypervisor를 통해 Linux OS와 함께 RTOS가 작동했을 때의 성능을 측정하고 비교 분석 하였다.
Kim, Jaehan;Shin, Hong-Chang;Cheong, Won-Sik;Bang, Gun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.22-24
/
2011
본 논문에서는 3차원 디스플레이 시스템에서 다수의 중간 시점 영상을 실시간으로 생성할 수 있도록 GPU 기반의 고속 영상 합성기법을 제안하였으며 그에 대한 성능을 알아본다. 카메라의 기하 정보 및 참조 영상들의 깊이 정보를 이용하여 중간 시점 영상을 생성하였으며, 영상 합성 방법을 GPU에서 병렬 처리함으로써 고속화할 수 있었다. GPU를 효율적으로 다루기 위해 NVIDIA사의 CUDA(Compute Unified Device Architecture)$^TM$를 이용하였다. 제안한 기법은 CUDA의 SIMD(Single Instruction MUltiple Data) 구조를 사용하여 중간 영상 합성을 처리할 수 있도록 설계하였다. 본 논문은 고속 영상 합성에 중점을 두었고, 제안한 고속화 기법의 결과를 분석함으로써 다시점 3차원 디스플레이 시스템의 적용 가능성을 알아본다.
Matrix multiplication is a fundamental mathematical operation that has numerous applications across most scientific fields. In this paper, we presents a parallel GPU computation algorithm for dense matrix-matrix multiplication using OpenGL compute shader, which can play a very important role as a fundamental building block for many high-performance computing applications. Experimental results on NVIDIA Quad 4000 show that the proposed algorithm runs about 208 times faster than previous CPU algorithm and achieves performance of 75 GFLOPS in single precision for dense matrices with matrix size 4,096. Such performance proves that our algorithm is practical for real applications.
Proceedings of the Korea Multimedia Society Conference
/
2012.05a
/
pp.275-278
/
2012
신경망 이론은 그 특성상 각각의 뉴런과 신경들 사이의 병렬적인 처리에 의해 Input에 대한 Output을 계산해 낸다. 하지만, 현대 컴퓨터들은 CPU를 통한 순차처리 방식으로 정보를 취급하기에 그 근본 구조가 달라 병렬구조를 모사하기 위해 계산하는 과정에 많은 시간이 소요된다. 본 논문에서는 신경망 학습을 NVIDIA사에서 제공한 CUDA를 사용하여 병렬 컴퓨팅 구조로 수행함으로서 시간을 단축시키는 것을 확인하고자 한다.
Proceedings of the Korea Multimedia Society Conference
/
2012.05a
/
pp.343-344
/
2012
With the increase of sensitive data and their secure transmission and storage, the use of encryption techniques has become widespread. The performance of encoding majorly depends on the computational time, so a system with less computational time suits more appropriate as compared to its contrary part. Double Random Phase Encoding (DRPE) is an algorithm with many sub functions which consumes more time when executed serially; the computation time can be significantly reduced by implementing important functions in a parallel fashion on Graphics Processing Unit (GPU). Computing convolution using Fast Fourier transform in DRPE is the most important part of the algorithm and it is shown in the paper that by performing this portion in GPU reduced the execution time of the process by substantial amount and can be compared with MATALB for performance analysis. NVIDIA graphic card GeForce 310 is used with CUDA C as a programming language.
The method and results of the software implementation of a echo processor for medical ultrasound imaging using a GPU (NVIDIA G80) is presented. The echo signal processing functions are modified in a SIMD manner suitable for the GPU's massively parallel processing architecture so that the GPU's 128 ALUs are utilized nearly 100%. The preliminary result for a frame of image composed of 128 scan lines, each having 10240 16-bit samples, shows that the echo processor can be inplemented at a high rate of 30 frames per second when implemented in C, which is close to the optimized assembly codes running on the TI's TMS320C6416 DSP.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.273-275
/
2011
본 논문에서는 효과적인 객체 추적을 위해 가우시언 믹스처 기반의 그림자 제거 알고리즘을 제안하고, GPGPU(General Purpose GPU) 아키텍처인 NVIDIA 사의 CUDA(Compute Unified Device Architecture)를 이용하여 기존의 객체 추적 알고리즘의 컴퓨팅 시간을 개선하는 모델을 제안한다. 이 시스템은 GPU를 이용한 가우시언 믹스처 모델 기반의 객체 추적 알고리즘으로 전경과 배경 분리 시 CPU와 GPU의 프로세스 시간을 적절히 분배하여 소모되는 연산시간을 줄이고, 고 해상도의 이미지에서의 객체 분리 및 추적의 시스템 처리량을 최대화 한다. 객체 추출 후 효과적인 추적을 위해 예측 모델인 칼만 필터를 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.