• 제목/요약/키워드: NVIDIA

검색결과 164건 처리시간 0.025초

근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법 (An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy)

  • 조병두
    • 한국방사선학회논문지
    • /
    • 제17권5호
    • /
    • pp.633-640
    • /
    • 2023
  • 최근 근접 치료에서 방사선 차폐막을 사용하여 선량 분포를 변조하여 선량을 전달하는 정적 및 동적 변조 근접 치료 방법이 개발됨에 따라 새로운 방향성 빔 세기 변조 근접 치료에 적합한 역방향 치료 계획 및 치료 계획 최적화 알고리즘에서 선량 계산에 필요한 파라미터 및 데이터의 양이 증가하고 있다. 세기 변조 근접 치료는 방사선의 정확한 선량 전달이 가능하지만, 파라미터와 데이터의 양이 증가하기 때문에 선량 계산에 필요한 경과 시간이 증가한다. 본 연구에서는 선량 계산 경과 시간의 증가를 줄이기 위해 그래픽 카드 기반의 CUDA 가속 선량 계산 알고리즘을 구축하였다. 계산 과정의 가속화 방법은 관심 체적의 시스템 행렬 계산 및 선량 계산의 병렬화를 이용하여 진행하였다. 개발된 알고리즘은 모두 인텔(3.7GHz, 6코어) CPU와 단일 NVIDIA GTX 1080ti 그래픽 카드가 장착된 동일한 컴퓨팅 환경에서 수행하였으며, 선량 계산 시간은 디스크에서 데이터를 불러오고 전처리를 위한 작업 등의 추가 적으로 필요한 시간은 제외하고 선량 계산 시간만 측정하여 평가하였다. 그 결과 가속화된 알고리즘은 CPU로만 계산할 때보다 선량 계산 시간이 약 30배 단축된 것으로 나타났다. 가속화된 선량 계산 알고리즘은 적응방사선치료와 같이 매일 변화되는 어플리케이터의 움직임을 고려하여 새로운 치료 계획을 수립해야 하는 경우나 동적 변조 근접 치료와 같이 선량 계산에 변화되는 파라미터를 고려해야 하는 경우 치료 계획 수립 속도를 높일 수 있을 것으로 판단된다.

고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석 (EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU)

  • 장태규;박진석;김종암
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

스테레오 영상 보행자 인식 시스템의 후보 영역 검출을 위한 GP-GPU 기반의 효율적 구현 (Efficient Implementation of Candidate Region Extractor for Pedestrian Detection System with Stereo Camera based on GP-GPU)

  • 정근용;정준희;이희철;전광길;조중휘
    • 대한임베디드공학회논문지
    • /
    • 제8권2호
    • /
    • pp.121-128
    • /
    • 2013
  • There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.

합성곱 신경망의 학습 가속화를 위한 방법 (A Method for accelerating training of Convolutional Neural Network)

  • 최세진;정준모
    • 문화기술의 융합
    • /
    • 제3권4호
    • /
    • pp.171-175
    • /
    • 2017
  • 최근 CNN(Convolutional Neural Network)의 구조가 복잡해지고 신견망의 깊이가 깊어지고 있다. 이에 따라 신경망의 학습에 요구되는 연산량 및 학습 시간이 증가하게 되었다. 최근 GPGPU 및 FPGA를 이용하여 신경망의 학습 속도를 가속화 하는 방법에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 NVIDIA GPGPU를 제어하는 CUDA를 이용하여 CNN의 특징추출부와 분류부에 대한 연산을 가속화하는 방법을 제시한다. 특징추출부와 분류부에 대한 연산을 GPGPU의 블록 및 스레드로 할당하여 병렬로 처리하였다. 본 논문에서 제안하는 방법과 기존 CPU를 이용하여 CNN을 학습하여 학습 속도를 비교하였다. MNIST 데이터세트에 대하여 총 5 epoch을 학습한 결과 제안하는 방법이 CPU를 이용하여 학습한 방법에 비하여 약 314% 정도 학습 속도가 향상된 것을 확인하였다.

워핑 기반의 감정 적응형 실시간 캐릭터 표정변환 기법 (Warp-based Emotion-adaptive Real-Time Transforming Technique of Character's Facial Expression)

  • 배동희;김진모;윤도경;조형제
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.434-437
    • /
    • 2011
  • 최근 단일 프로세서의 성능 개선이 한계에 이르고, 이에 따라 데이터 병렬 처리를 통한 시스템 성능 개선에 관한 연구가 활발히 진행되고 있다. 또한 이러한 변화로 인해 영상처리 분야에서도 대규모 연산의 병렬 컴퓨팅 수행에 관한 연구가 꾸준히 진행되고 있으며 하드웨어 또한 발전하여 실시간 시스템에 영상처리 분야가 많이 활용되고 있다. 본 논문에서는 캐릭터의 감정 상태에 따른 표정을 영상처리 분야에서 많이 사용되고 있는 이미지 워핑 기법을 적용하여 변화시킨다. 인간이 표현할 수 있는 기본적인 감정에 따른 표정을 데이터베이스로 정리하여 캐릭터에게 임의의 감정값이 주어지면 그에 맞는 표정을 데이터베이스에서 선택하여 사용자가 설정한 프레임만큼 워핑을 수행한다. 하지만 매 프레임에 대해 정해져 있는 제어선에 따라 움직이는 픽셀들의 워핑 연산은 그 계산량이 너무 많아 실시간으로 처리하기에 여러 가지 제약이 뒤따른다. 따라서 이를 실시간으로 처리하기 위해 NVIDIA의 CUDA를 활용한 데이터 병렬처리를 수행하여 실시간 처리가 가능하게 하는 방법을 제안하고, 실험을 통해 그 유용성을 제시한다.

GCN 아키텍쳐 상에서의 OpenCL을 이용한 GPGPU 성능향상 기법 연구 (A Study on GPGPU Performance Improvement Technique on GCN Architecture Using OpenCL API)

  • 우동희;김윤호
    • 한국전자거래학회지
    • /
    • 제23권1호
    • /
    • pp.37-45
    • /
    • 2018
  • 현재 프로그램이 운용되는 시스템은 기존의 싱글코어 및 멀티코어 환경을 넘어서 매니코어, 부가 프로세스 및 이기종 환경까지 그 영역이 확장되고 있는 중이다. 하지만, 기존 연구의 경우 NVIDIA 벤더에서 나온 아키텍쳐 및 CUDA로의 병렬화가 주로 이루어졌고 AMD에서 나온 범용 GPU 아키텍쳐인 GCN 아키텍쳐에 대한 성능향상에 관한 연구는 제한적으로 이루어졌다. 이런 점을 고려해 본 논문에서는 GCN 아키텍쳐의 GPGPU 환경인 OpenCL 내에서의 성능향상 기법에 대해 연구하고 실질적인 성능향상을 보였다. 구체적으로, 행렬 곱셈과 컨볼루션을 적용한 GPGPU 프로그램을 본 논문에서 제시한 성능향상 기법을 통해 최대 30% 이상의 실행시간을 감소시켰으며, 커널 이용률 또한 40% 이상 높였다.

Plane-converging Belief Propagation을 이용한 고속 스테레오매칭 (Fast Stereo matching based on Plane-converging Belief Propagation using GPU)

  • 정용한;박은수;김학일;허욱열
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.88-95
    • /
    • 2011
  • 스테레오 매칭은 두 영상의 차이를 이용하여 거리를 추정하는 연구 분야로 성능 개선과 함께 처리속도 향상을 위한 연구가 계속되고 있다. 본 논문에서는 계층적 Belief Propagation(BP) 알고리즘을 개선하여 기존의 BP에서의 수렴구간을 메시지 맵으로 만들고 이를 이용하여 처리속도를 향상시키는 Plane-converging BP 알고리즘을 제안한다. 또한 GPU 아키텍쳐인 Nvidia의 CUDA를 이용하여 다수의 계산을 병렬화 하고 이를 동시에 처리하여 실시간 어플리케이션에 적합한 스테레오 매칭 기법을 개발하였다. Plane-converging BP 알고리즘은 기존의 계층적 BP 알고리즘과 유사한 에러율을 가지면서 약 2.7배의 속도 향상을 이루었다.

Performance Study of Satellite Image Processing on Graphics Processors Unit Using CUDA

  • Jeong, In-Kyu;Hong, Min-Gee;Hahn, Kwang-Soo;Choi, Joonsoo;Kim, Choen
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.683-691
    • /
    • 2012
  • High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.

CUDA based parallel design of a shot change detection algorithm using frame segmentation and object movement

  • Kim, Seung-Hyun;Lee, Joon-Goo;Hwang, Doo-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.9-16
    • /
    • 2015
  • This paper proposes the parallel design of a shot change detection algorithm using frame segmentation and moving blocks. In the proposed approach, the high parallel processing components, such as frame histogram calculation, block histogram calculation, Otsu threshold setting function, frame moving operation, and block histogram comparison, are designed in parallel for NVIDIA GPU. In order to minimize memory access delay time and guarantee fast computation, the output of a GPU kernel becomes the input data of another kernel in a pipeline way using the shared memory of GPU. In addition, the optimal sizes of CUDA processing blocks and threads are estimated through the prior experiments. In the experimental test of the proposed shot change detection algorithm, the detection rate of the GPU based parallel algorithm is the same as that of the CPU based algorithm, but the average of processing time speeds up about 6~8 times.

Algorithmic GPGPU Memory Optimization

  • Jang, Byunghyun;Choi, Minsu;Kim, Kyung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.391-406
    • /
    • 2014
  • The performance of General-Purpose computation on Graphics Processing Units (GPGPU) is heavily dependent on the memory access behavior. This sensitivity is due to a combination of the underlying Massively Parallel Processing (MPP) execution model present on GPUs and the lack of architectural support to handle irregular memory access patterns. Application performance can be significantly improved by applying memory-access-pattern-aware optimizations that can exploit knowledge of the characteristics of each access pattern. In this paper, we present an algorithmic methodology to semi-automatically find the best mapping of memory accesses present in serial loop nest to underlying data-parallel architectures based on a comprehensive static memory access pattern analysis. To that end we present a simple, yet powerful, mathematical model that captures all memory access pattern information present in serial data-parallel loop nests. We then show how this model is used in practice to select the most appropriate memory space for data and to search for an appropriate thread mapping and work group size from a large design space. To evaluate the effectiveness of our methodology, we report on execution speedup using selected benchmark kernels that cover a wide range of memory access patterns commonly found in GPGPU workloads. Our experimental results are reported using the industry standard heterogeneous programming language, OpenCL, targeting the NVIDIA GT200 architecture.