• Title/Summary/Keyword: NUTRIOSE

Search Result 3, Processing Time 0.018 seconds

A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats

  • Kim, Kyung-Ah;Yoo, Hye Hyun;Gu, Wan;Yu, Dae-Hyung;Jin, Ming Ji;Choi, Hae-Lim;Yuan, Kathy;Guerin-Deremaux, Laetitia;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.183-187
    • /
    • 2015
  • Background: Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. Methods: Male Sprague-Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography-tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. Results: When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration ($C_{max}$) and area under the plasma concentration-time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. Conclusion: These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.

Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng

  • Kim, Kyung-Ah;Yoo, Hye Hyun;Gu, Wan;Yu, Dae-Hyung;Jin, Ming Ji;Choi, Hae-Lim;Yuan, Kathy;Guerin-Deremaux, Laetitia;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.203-207
    • /
    • 2014
  • Background: There is limited understanding of the effect of dietary components on the absorption of ginsenosides and their metabolites into the blood. Methods: This study investigated the pharmacokinetics of the ginseng extract and its main constituent ginsenoside Rb1 in rats with or without pretreatment with a prebiotic fiber, NUTRIOSE, by liquid chromatography tandem mass spectrometry. When ginsenoside Rb1 was incubated with rat feces, its main metabolite was ginsenoside Rd. Results: When the intestinal microbiota of rat feces were cultured in vitro, their ginsenoside Rd-forming activities were significantly induced by NUTRIOSE. When ginsenoside Rb1 was orally administered to rats, the maximum plasma concentration (Cmax) and area under the plasma drug concentratione-time curve (AUC) for the main metabolite, ginsenoside Rd, were $72.4{\pm}31.6ng/mL$ and $663.9{\pm}285.3{\mu}g{\cdot}h/mL$, respectively. When the ginseng extract (2,000 mg/kg) was orally administered, Cmax and AUC for ginsenoside Rd were $906.5{\pm}330.2ng/mL$ and $11,377.3{\pm}4,470.2{\mu}g{\cdot}h/mL$, respectively. When ginseng extract was orally administered to rats fed NUTRIOSE containing diets (2.5%, 5%, or 10%), Cmax and AUC were increased in the NUTRIOSE receiving groups in a dose-dependent manner. Conclusion: These findings reveal that intestinal microflora promote metabolic conversion of ginsenoside Rb1 and ginseng extract to ginsenoside Rd and promote its absorption into the blood in rats. Its conversion may be induced by prebiotic diets such as NUTRIOSE.

Effects of a soluble dietary fibre NUTRIOSE$^{(R)}$ on colonic fermentation and excretion rates in rats

  • Guerin-Deremaux, Laetitia;Ringard, Florence;Desailly, Fabrice;Wils, Daniel
    • Nutrition Research and Practice
    • /
    • v.4 no.6
    • /
    • pp.470-476
    • /
    • 2010
  • The resistant dextrin NUTRIOSE$^{(R)}$, developed from starch, is expected to act as a prebiotic. The aim of this study was to determine the effects of NUTRIOSE$^{(R)}$ on cecal parameters, short-chain fatty acid (SCFA) concentrations, and fecal excretion in rats. In an initial experiment, twenty-four male Fischer F344 rats were randomly assigned to one of the following four treatments for 14 days: G0 (control diet), G2.5 (control diet+2.5% of dextrin), G5 (control diet + 5% of dextrin), and G10 (control diet + 10% of dextrin). After 14 days, total cecal weight, cecal content, and cecal wall weight were significantly increased in G5 and G10 compared to G0. At the same time, cecal pH was significantly lower in G10 compared to G0. Total SCFA concentration was significantly higher in G10 than in G5, G2.5, and G0, and significantly higher in G5 than in G0. Acetate, butyrate, and propionate concentrations were significantly increased in G5 and G10 compared to the controls. In a second trial based on a similar design, eighteen male Fischer F344 rats were treated with a control diet supplemented with 5% of dextrin or 5% of fructo-oligosaccharide. The results obtained with NUTRIOSE$^{(R)}$ were similar to those obtained with the fructo-oligosaccharide. In a third experiment, two groups of 5 Fischer F344 rats were orally treated with 100 and 1,000 mg/kg NUTRIOSE$^{(R)}$, respectively, and from 18% to 25% of the dextrin was excreted in the feces. The results of these three studies show that the consumption of NUTRIOSE$^{(R)}$, by its effects on total cecal weight, cecal content, cecal wall weight, pH, and SCFA production, could induce healthy benefits since these effects are reported to be prebiotic effects.