• Title/Summary/Keyword: NURBS(NURBS)

Search Result 274, Processing Time 0.025 seconds

Finite Element Analysis of the Unconstrained Cylindrical Bending Process Considering Continuous Contact Treatment (연속 접촉 처리를 고려한 실린더 벤딩 성형 공정의 유한요소해석)

  • Kim T. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.547-552
    • /
    • 2005
  • In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. The analysis of the unconstrained cylindrical bending process without blank holder is also presented in order to investigate the effect of the proposed algorithm.

FE-analysis of sheet metal forming processes considering continuous contact treatment (연속접촉처리를 고려한 박판성형공정의 해석)

  • Kim T. S.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.134-137
    • /
    • 2005
  • In this paper, a continuous contact treatment has been considered during FE-analysis of the sheet metal forming processes. Because the simulation is usually performed stepwise, the status of contact can change suddenly. In case of implicit scheme, the increment of punch stroke can be chosen as large value. For exact assessment of contact force and friction force between die and sheet, the continuous contact treatment is proposed. The virtual surface of sheet metal is modeled by NURBS curves or surfaces in order to calculate exact contact area and penetration depth. From the geometrical evaluation of contact behavior, additional contact pressure is imposed to the element. The deformation of bending process and hydroforming process are analyzed based on this scheme.

  • PDF

An Implementation of Three-Dimensional STEP Data Viewer (삼차원 STEP 데이터 뷰어 개발)

  • Choi, Young;Yuh, Chang-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.54-61
    • /
    • 1999
  • Three dimensional CAD data viewer helps a user to view and use many different types of CAD data without having costly programs that produced them loaded on their computers. A viewer for standard data formats such as STEP and IGES is more useful since most of the CAD systems provide translators for them. We developed a 3D CAD viewer for STEP AP203 solid and assembly data. In addition to the standard shading and assembly tree display, functions for 3D markups and measurement of distance and angles were implemented.

  • PDF

A Study on the Skin Animation for Improving its Rendering speed Using NURBS (NURBS를 이용한 Skin Animation의 속도 향상에 관한 연구)

  • 강종호;이우석;김경식
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.705-708
    • /
    • 2004
  • 과거 로(low)-폴리곤 3D 메시는 모델러에 의해 각 정점들의 제어가 가능했지만, 앞으로의 대세가 전망되는 하이-폴리곤의 경우 모든 정점들을 일일이 제어하는 것은 불가능하다. 따라서 하이-폴리곤 3D 메시는 넙스로 구성될 것이다. 본 연구는 이러한 하이-폴리곤 3D 메시가 스킨 애니메이션될 때 하이-폴리곤 3D 메시의 넙스 구조와 넙스의 계산 속도를 개선하여 애니메이션의 속도를 향상시키는 것을 연구하였다. 본 연구의 결과는 3D 애플리케이션에서 애니메이션을 사용할 때, 하이-폴리곤일수록 애니메이션 연산이 증가하는 것을 억제하고 하이-폴리곤을 사용하는 애니메이션의 부담없는 사용과 넙스의 LOD 적용을 실시간에 가능하게 한다.

  • PDF

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis (등기하해석법을 이용한 자유진동 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.

Free vibration behaviour of multi-directional functionally graded imperfect plates using 3D isogeometric approach

  • Lahdiri, Abdelhafid;Kadri, Mohammed
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.527-538
    • /
    • 2022
  • In this paper the free vibration frequencies of tri-directional functionally graded materials imperfect plate is investigated for Several plate geometries with two types of porosity (even and uneven) and different type of material configuration. The effect of several parameters such as power law index and boundary conditions have been investigated. For this purpose, an efficient computational method is developed and written under Matlab environment, based on a three-dimensional modeling and the isogeometric method is used for the discretization of the structure based on NURBS (Nonuniform rational B-spline) basis functions. The results obtained by the present method are validated by the comparison with the results given by several authors in the literature.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

A Development of Pre and Post Processor for Design of Surface System of Free Form Building (비정형 건축물의 외피시스템 설계를 위한 전·후처리 모듈 개발)

  • Park, Se-Hee;Jung, Sung-Jin;Lee, Jae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.333-340
    • /
    • 2018
  • Recently, free-form buildings have been designed with complex shapes due to digitization of the construction industry. Exterior and interior components of free-form buildings have free cross sections and curved shapes. Therefore, structural members with curvature are frequently seen. In the modeling and stability evaluation of these structures, commercial programs using classical finite element analysis are not able to perform rapid shape modeling, resulting in a decrease in productivity. Therefore, in this study, pre- and post-processing modules were developed using a prior study to rapidly model the surface of a free-form building and to automatically generate frame structures that make up the cladding. The developed modules use a subdivision algorithm with spline curves. This algorithm is used to automatically generate analytical elements from the configuration information of NURBS curves. In addition, the deformation after analysis can be viewed more realistically. The modules can quickly construct complex curved surfaces. An analysis model of the frame structure was also automatically generated. Therefore, the modules could contribute to the productivity improvement of free-form building design.

Efficient Algorithm for the Real-time Generation of Reflection Lines (자동차 스타일링을 위한 반사선의 실시간 생성 및 표현 알고리듬)

  • Gang, Ju-Yeop;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.173-181
    • /
    • 2000
  • Depending upon the method of the surface generation and the quality of the boundary curves provided, the resulting surfaces may have global or local irregularities in many cases. Thus it would be necessary for the designer to evaluate the surface quality and to modify the surface. This capability is very important because the defect of the surface requires the rework of the dies that causes a big loss in cost and delivery time. To simulate the reflection line test in the actual production line, a faster generation algorithm is presented. Among., various surface interrogation methods using reflection lines, Blinn-Newell type of reflection mapping is applied to generate reflection lines on the trimmed NURBS surface. The generation of reflection lines is formulated as a surface-plane intersection problem, and solved by surface-contouring techniques. In addition, a modified reflection map is proposed to eliminate the discontinuity of reflection lines due to the configuration of the reflection map. A fast reflection line algorithm is developed utilizing an efficient traced contouring technique, and proved to be well suited for real-time quality-assessment task.