• Title/Summary/Keyword: NTF2

Search Result 27, Processing Time 0.024 seconds

Comparison of Update Performance by File System of Mobile Database SQLite3 (모바일 데이터베이스 SQLite3의 File System별 갱신 성능 비교)

  • Choi, Jin-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1117-1122
    • /
    • 2020
  • The improving performance and utilizing application fields of mobile devices are getting bigger and wider. With this trend, applications that use database engines on mobile devices are also becoming common. Applications requiring mobile databases include mobile server databases, edge computing, fog computing, and the like. By the way, the most representative and widely used mobile database is SQLite3. In this paper, we test and compare the update performance of SQLite3 by some file systems. The update performance of the file systems in the mobile environment is an important performance factor in the limited H/W environment. The comparison file system was chosen as FAT, Ext2, and NTFS. Under the same conditions, experiments with each file system to test update performance and characteristics were processed. From the experimental results, we could analyze the advantages and disadvantages of each file system for each database update pattern.

Paraboloidal 2-mirror Holosymmetric System with Unit Maginification for Soft X-ray Projection Lithography (연X-선 투사 리소그라피를 위한 등배율 포물면 2-반사경 Holosymmetric System)

  • 조영민;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.188-200
    • /
    • 1995
  • A design of unit magnification 2-mirror system with high resolution is presented. It is for soft X-ray(wavelength of 13 nm) projection imaging and suitable for preparation of high density semiconductor chip. In general, a holosymmetric system with unit magnification has the advantage that both coma and distortion are completely eliminated. In our holosymmetric 2-mirror system, spherical aberration is addtionally removed by using two identical paraboloidal mirror surfaces and field curvature aberration is also corrected by balancing Petzval sum and astigmatism which depends on the distance between two mirrors, so that the system is a aplanatic flat-field paraboloidal 2-mirror holosymmetric system. This 2-mirror system is small in size, and has a simple configuration with rotational symmetry about optical axis, and has also small central obscuration. Residual finite aberrations, spot diagrams, and diffraction-based MTF's are analyzed for the check of performances as soft X-ray lithography projection system. As a result, the image sizes for the resolutions of$0.25\mum$and $0.18\mum$are 4.0 mm, 2.5 mm respectively, and depths of focus for those are $2.5\mum$, $2.4\mum$respectively. This system should be useful in the fabrication of 256 Mega DRAM or 1 Giga DRAM. DRAM.

  • PDF

Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate (자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구)

  • Kim, Dae-Wan;Ekanayake, Gihan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.15-20
    • /
    • 2018
  • The objective of this study is to numerically investigate the thermal characteristics of an automobile exhaust-based heat exchanger for automotive thermoelectric power generation with various exhaust gas mass flow rates and temperatures. The heat exchanger for automotive thermoelectric power generation has a square-type pin installed inside, so the maximum amount of heat can be transferred to the thermoelectric element from the heat energy coming from the automobile exhaust gas. The exhaust gas mass flow rate changed from 0.01, to 0.02, to 0.03 kg/s, and the exhaust gas temperature changed from 400, to 450, to 500, to 550, to $600^{\circ}C$, respectively. A numerical simulation was conducted by using the commercial program ANSYS CFX v17.0. Consequently, the exhaust gas pressure difference between the inlet and the outlet of the heat exchanger is determined according to the flow rate of the exhaust gas. When the mass flow rate of the exhaust gas increased, the pressure difference between the inlet and the outlet of the heat exchanger increased, but the exhaust gas pressure difference between the inlet of the heat exchanger and the outlet did not vary with the exhaust gas temperature. Therefore, in order to obtain the maximum surface temperature from the heat exchanger, the exhaust gas mass flow rate should be lower, and the exhaust gas temperature should be higher.

Study on the High Frequency Heat Treatment Characteristics with the Distance between Coil and SCM440 Parts (고주파 열처리 코일과 피가열물 사이 간극에 따른 SCM440 강의 고주파 열처리 특성에 관한 연구)

  • Kim, Dae-Wan;Choi, Jee-Seok;Han, Chang-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • This study investigates the high-frequency heat treatment characteristics with the distance between a coil and SCM440 parts for an automobile. Global automobile makers are focusing on research to develop high-performance automobiles with improved fuel efficiency and lower emissions in accordance with consumer demand and environmental policies. However, most research on high-frequency heat treatment has been experimental, and it is very difficult to obtain high-frequency heat treatment conditions for a specific product. Therefore, all the conditions of high-frequency heat treatment except the distance between a coil and SCM440 parts were kept the same. As a result, the optimized distance between the coil and SCM440 parts was observed to be 1-2 mm. When the distance between the coil and SCM440 parts was over 3 mm, the effective case hardness depth and total case hardness depth did not satisfy the standards.

Experimental Study on the Heating Performances of the Air Heater with Diesel for Passenger Cabin Heating of an Electric Vehicle (전기자동차용 승차공간 난방용 디젤 공기 히터의 실차 성능에 관한 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7250-7255
    • /
    • 2015
  • The objective of this study is to experimentally investigate the heating performances of the portable air combustion heater using diesel fuel for auxiliary cabin heating of the battery electric vehicle. In order to evaluate the heating performances of the air combustion heater, the heating capacity was calculated by the temperature at inlet and outlet parts of the considered heater and the inner temperature distribution characteristics of the vehicle were measured during 1600 seconds with an interval of 1 second. The theoretical efficiency of the tested heater was calculated by temperature data of the air of supplying and exhausting to the cabin. As the air passed the heat-sink, the air temperature at the end of heat-sink reached to $101.3^{\circ}C$ and the difference of temperature on heat-sink was 67.8%. The average heating capacity of the air combustion heater showed 2.0 kW. After 1800 seconds, the inner temperature of the vehicle cabin was continuously increased. The temperatures of the top side and the bottom side of the car cabin under consideration were increased upto $42.5^{\circ}C$ and $24.3^{\circ}C$, respectively, and the theoretical efficiency of the tested heater was on average 63.7%.

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle (전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Patil, Mahesh Suresh;Cho, Chong-Pyo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.725-731
    • /
    • 2016
  • This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

The Effects of Coupled Open Innovation of Small- and Medium-sized Enterprises on Firm Performance: Focusing on R&D and Non-R&D Innovation Cooperation Activities (중소기업의 결합형 개방형 혁신이 기업성과에 미치는 효과: R&D 및 R&D 이외의 혁신협력활동을 중심으로)

  • Ji-Hoon Park;Jungwoo Lee
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.177-205
    • /
    • 2022
  • Small- and medium-sized enterprises (SMEs) have strong incentives to engage in open innovation to enhance innovation efficiency and effectiveness due to their 'liability of smallness.' Previous research examined the performance effects of various open innovation practices, but whether coupled open innovation practices positively affect SMEs' firm performance is somewhat controversial. To resolve the issue, this study examined the effects of coupled open innovation activities on SMEs' firm performance using Heckman's two stage model to control endogeneity of the firms' self-selection bias in open innovation engagement. This study used the Korean Innovation Survey (KIS) 2020 collected by the Science and Technology Policy Institute (STEPI), and tested the effects of SMEs' coupled open innovation activities, R&D and non-R&D cooperation, on their innovative and financial performance indicators. The results showed that SMEs' R&D cooperation positively affects the new-to-market (NTM) product innovation only. Moreover, SMEs' non-R&D cooperation has positive effects on the product innovation, business process innovation, new-to-the-market product innovation, and new-to-firm (NTF) product innovation. However, the results showed that both R&D and non-R&D innovation cooperation activities have no significant effects on SMEs' financial performance indicators. This study contributes to research on SMEs' open innovation and provides insights for SMEs' managers and policymakers.