• Title/Summary/Keyword: NTF(Noise transfer function)

Search Result 4, Processing Time 0.016 seconds

NEW TECHNIQUE IN THE USE OF VIBRO-ACOUSTICAL RECIPROCITY WITH APPLICATION TO THE NOISE TRANSFER FUNCTION MEASUREMENT

  • Ko, K.H.;Kook, H.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • A noise transfer function(NTF) is the frequency response function between an input force applied to an exterior point of a vehicle body and the resultant interior sound pressure usually measured at the driver's ear position. It represents the measure of noise sensitivity for the output force transmitted to the joints between the body and chassis. The principle of vibro-acoustic reciprocity is often utilized in the measurement of NTF. One difficulty in using the volume source is that most of the previously proposed methods require the knowledge of the volume velocity of the acoustic source in advance. A new method proposed in the present work does not require any calculation related with the volume velocity of the acoustic source, but still yields even more accurate results both in the amplitude and phase of the NTF. In the present work, the new method is applied to obtain NTF data for a midsize sedan.

The Analysis of Vehicle Interior Noise by the Powertrain, and Measurement of Noise Trasnsfer Function using Vibro-Acoustic Reciprocity (파워트레인에 의한 차량 실내 소음 특성 및 전달 함수 측정)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.501-506
    • /
    • 2007
  • Structure-borne noise is the interior noise that results from the low frequency vibrational energy transmitted through those body and joint parts. The relation between the excitation of powertrain and resultant interior sound must be analyzed in order to identify and predict the structure borne noise. The method of acoustic source excitation is preferred than the method of mechanical force excitation to measure the NTF(noise transfer function). Because acoustical method is more convenient and reliable. In this paper, to analysis and identify vehicle interior noise by powertrain is performed, and the vibro-acoustic transfer function is extracted from experimental measurement. These are important step of TPA(transfer path analysis) to identify effect of interior noise resulted from powertrain running excitation.

  • PDF

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

Estimating Non-Ideal Effects within a Top-Down Methodology for the Design of Continuous-Time Delta-Sigma Modulators

  • Na, Seung-in;Kim, Susie;Yang, Youngtae;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • High-level design aids are mandatory for design of a continuous-time delta-sigma modulator (CTDSM). This paper proposes a top-down methodology design to generate a noise transfer function (NTF) which is compensated for excess loop delay (ELD). This method is applicable to low pass loop-filter topologies. Non-ideal effects including ELD, integrator scaling issue, finite op-amp performance, clock jitter and DAC inaccuracies are explicitly represented in a behavioral simulation of a CTDSM. Mathematical modeling using MATLAB is supplemented with circuit-level simulation using Verilog-A blocks. Behavioral simulation and circuit-level simulation using Verilog-A blocks are used to validate our approach.