• 제목/요약/키워드: NTCIR

검색결과 3건 처리시간 0.014초

보기 검증을 통한 일본 센터 시험 문제 해결 (Solving Japanese Center Exam with Choice Verification)

  • 권순철;남대환;유환조;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.190-193
    • /
    • 2015
  • 이 논문에서는 한국의 수능 시험에 대응하는 일본 센터 시험의 세계사B 문제를 해결하는 시스템을 만들고 그 성능을 평가했다. 이 시스템은 문제의 각 보기의 신뢰도를 검증하여 어떤 보기가 참인지를 결정한다. 보기 검증을 위해 지식 베이스 기반, 정보 검색 기반, 시간적 제약 기반 검증을 사용하였다. 성능 평과 결과 6개년도 시험 중 5개 시험에서 통계적으로 의미 있는 결과를 얻었다. 이 시스템은 영어를 대상으로 하나, 한국어에도 존재하는 리소스를 사용했기 때문에 한국어에서도 같은 방법론을 적용할 수 있을 것으로 본다. 후속 연구로는 보기의 의미적 분석과 개체명 이외의 정보에 대한 검색이 필요하다.

  • PDF

다중문서 요약에서 적응 기법을 이용한 문장 추출 (Sentence Extraction Using Adapting Method in Multi-Document Summarization)

  • 임정민;강인수;배재학;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.12-19
    • /
    • 2004
  • 기존의 다중 문서요약은 전체 대상문서에 대해서 한번에 요약문을 생산하지만, 본 논문은 요약 대상문서 집합에서 핵심내용을 갖는 문서를 기본 문서로 선택, 임시 요약문장을 추출하고 대상문서 집합에서 순차적으로 문서를 입력받아 중요문장을 추출, 이전에 구축된 요약문장과 현재 추출된 문장을 비교하면서 요약에 필요한 문장을 선택하는 적응 기법을 제안한다. 제안한 방법으로 구현한 시스템은 NTCIR TSC 3에서 사용된 29개의 다중 문서집합을 통해서 성능을 평가하였다. 적응 기법 시스템은 TSC3의 baseline시스템인 Lead 방법보다는 높은 성능을 나타냈지만, TSC 3에 참가한 시스템들과의 비교에서는 월등한 성능 우위를 나타내지 못했다.

  • PDF

위키피디아로부터의 자동 병렬 문장 추출 기법을 이용한 영어-한국어 교차언어 정보검색의 번역 성능 개선 (Improving Query Translation by Extracting Parallel Sentences from Wikipedia for Cross-Language Information Retrieval)

  • 천주룡;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-40
    • /
    • 2015
  • 본 논문은 영어-한국어 교차언어 정보검색의 질의어 번역에 대한 중요한 자원으로 활용되는 병렬 말뭉치의 품질 향상을 위해서, 위키피디아의 비교 말뭉치로부터 자동으로 병렬 문장을 추출하여 활용하는 기법을 제안한다. 기존 연구에서 질의어 번역을 위해 위키피디아의 이중 어휘 사전 및 동의어, 다의어 정보를 구축하고, 기 기축된 병렬 말뭉치와 함께 활용하여 여러 의미를 가진 번역 후보 단어들 중, 최적의 단어를 선택하는 방법을 이용하고 있다. 여기서 활용되는 병렬 말뭉치는 질의어 번역에서 가장 중요한 자원이다. 하지만, 기 구축된 병렬 말뭉치는 양이 적거나, 특정 영역을 중심으로 구성되어 있는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문은 위키피디아로부터 자동 병렬 문장 추출 기법을 이용, 대량의 영어-한국어 간 병렬 말뭉치를 구축하고, 이를 교차언어 정보검색을 위한 질의어 번역에 적용하여 개선을 보인다. 실험의 성능 비교를 위해서 NTCIR-5 데이터를 이용하였으며 기 구축된 세종 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 31.5%, R-P 33.0%에서, 새롭게 구축한 위키피디아 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 34.6%, R-P 34.6%로, 각각 MAP 3.1%와 R-P 1.6%의 성능 향상을 보였다.

  • PDF