• Title/Summary/Keyword: NT embryos

Search Result 106, Processing Time 0.03 seconds

Effects of Cryoprotectant, Warming Solution and Removal of Lipid on Viability of Porcine Nuclear Transfer Embryos Vitrified by Open Pulled Straw Method

  • Cong, Pei-Qing;Song, Eun-Sook;Kim, Eui-Sook;Li, Zhao-Hua;Zhang, Yong-Hua;Lee, Jang-Mi;Yi, Young-Joo;Park, Chang-Sik
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • This study was carried out to investigate the effects of cryoprotectants, warming solution and removal of lipid on open pulled straw vitrification (OPS) method of porcine embryos produced by nuclear transfer (NT) of fetal fibroblasts. All solutions used during vitrification were prepared with holding medium consisting of 25 mM Hepes buffered TCM199 medium containing 20% fetal bovine serum (FBS) at $38.5^{\circ}C$. The blastocysts derived from NT with or without lipid were vitrified in each medium of different concentrations of dimethyl sulfoxide (DMSO) and ethylene glycol (EG). Also, blastocysts after cryopreservation were warmed into different concentrations of sucrose in warming solution. The optimal concentrations of cryoprotectants in vitrification solution were 10% DMSO + 10% EG in vitrification solution 1 (VS1) and 20% DMSO + 20% EG in vitrification solution 2 (VS2). The optimal concentrations of sucrose were 0.3 M sucrose in warming solution 1 (WS1) and 0.15 M sucrose in warming solution 2 (WS2). lipid removal from oocytes before NT enhanced the viability of NT embryos after vitrification. Our results show that use of the OPS method in conjunction with lipid removal provides effective cryopreservation of porcine nuclear transfer embryos.

Production of Bovine Transgenic Cloned Embryos using Prourokinase-Transfected Somatic Cells: Effect of Expression Level of Reporter Gene (인간 Prourokinase가 도입된 체세포를 이용한 소 형질전환 복제란 생산: 표지유전자 발현정도에 따른 효과)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;G. Jang;Park, E. S.;S. K. Kang;Lee, B. C.;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2002
  • Human Prourokinase (proUK) offers potential as a novel agent with improved fibrin specificity and, as such, may offer advantages as an attractive alternative to urokinase that is associated with clinical benefits in patients with acute peripheral arterial occlusion. For production of transgenic cow as human proUK bioreacotor, we conducted this study to establish efficient production system for bovine transgenic embryos by somatic cell nuclear transfer (NT) using human prourokinase gene transfected donor cell. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human prourokinase target gene into a pcDNA3 plasmid. Cumulus cells were used as donor cell and transfected with the expression plasmid using the Fugene 6 as a carrier. To increase the efficiency for the production of transgenic NT, development rates were compared between non-transfected and transfected cell in experiment 1, and in experiment 2, development rates were compared according to level of GFP expression in donor cells. In experiment 1, development rates of non-transgenic NT embryos were significantly higher than transgenic NT embryos (43.3 vs. 28.4%). In experiment 2, there were no significant differences in fusion rates (85.4 vs. 78.9%) and cleavage rates (78.7 vs. 84.4%) between low and high expressed cells. However, development rates to blastocyst were higher in low expressed cells (17.0 vs. 33.3%), and GFP expression rates in blastocyst were higher in high expressed cells (75.0 vs. 43.3%), significantly.

Comparison of Developmental Competency of Porcine Embryos Cloned with Mesenchymal Stem Cells and Somatic Cells

  • Jin Hai-Feng;Kumar B. Mohana;Cho Sung-Keun;Ock Sun-A;Jeon Byeong-Gyun;Balasubramanian S.;Choe Sang-Yong;Rho Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • The present study compared the developmental potential of cloned porcine embryos with mesenchymal stem cells (MSCs), fetal fibroblasts (FFs) and cumulus cells (CCs) by assessing the cleavage and blastocyst rate, total cell number, inner cell mass (ICM) ratio and apoptosis. MSCs were isolated by ficoll gradients from femur of -6 month old female pig, and maintained for primary cultures. FFs from a female fetus at ${\sim}30$ day of gestation were established, and CCs were obtained from cumulus oocyte complexes (COCs) aspirated from $3{\sim}6$ mm follicles in diameter. Donor cells at $3{\sim}4$ passage were employed for nuclear transfer (NT). COCs were matured and fertilized in vitro(IVF) as control. Cleavage rate was significantly (P<0.05) higher in IVF than in NT embryos with MSCs, FFs and CCs ($82.7{\pm}8.9%\;vs\;70.6{\pm}5.4,\;68.7{\pm}5.1\;and\;63.4{\pm}5.6%$, respectively). However, blastocyst rates in IVF and NT embryos derived from MSCs ($24.5{\pm}2.8\;and\;20.4{\pm}8.3%$) did not differ, but were significantly (P<0.05) higher than NT derived from FFs and CCs ($10.6{\pm}2.7\;and\;9.8{\pm}2.1%$). Total cell number and the ratio of ICM to total cells among blastocysts cloned from MSCs ($35.4{\pm}5.2\;and\;0.40{\pm}0.09%$, respectively) were significantly (P<0.05) higher than those from FFs and CCs ($24.9{\pm}6.2%\;vs\;0.19{\pm}0.16,\;23.6{\pm}5.5\;and\;0.17{\pm}0.16%$, respectively). Proportions of TUNEL positive cells in NT embryos from FFs and CCs ($6.9{\pm}1.5\;and\;7.4{\pm}1.7%$, respectively) were significantly (P<0.05) higher than in MSCs ($4.8{\pm}1.4%$) and IVF ($2.3{\pm}0.9%$). The results demonstrate that MSCs have a greater potential as donor cells than FFs and CCs in achieving enhanced production of cloned porcine embryos.

Expression and Localization of Heat Shock Protein 70 in Frozen-Thawed IVF and Nuclear Transfrred Bovine Embryos

  • Park, Y.J;S.J Song;J.T Do;B.S Yoon;Kim, A.J;K.S Chung;Lee, H.T
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.78-78
    • /
    • 2002
  • The role of heat shock proteins in shielding organism from environmental stress is illustrated by the large-scale synthesis of these protein by the organism studied to date. However, recent evidence also suggests an important role for heat shock protein in fertilization and early development of mammalian embryos. Effects of elevated in vitro temperature on in vitro produced bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (HSP70) by control and frozen-thawed after in vitro fertilization (IVF) or nuclear transfer (NT). The objective of this study was to assess the developmental potential in vitro produced embryos with using of the various containers and examined expression and localization of heat shock protein 70 after it's frozen -thawed. For the vitrification, in vitro produced embryos at 2 cell, 8 cell and blastocysts stage after IVF and NT were exposed the ethylene glycol 5.5 M freezing solution (EG 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min, and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid, cryo-loop. However, survival rates by straw were relatively lower than other containers. Only, nuclear transferred embryos survived by using cryo-loop. After IVF or NT, in vitro matured bovine embryos 2 cell, 8 cell and blastocysts subjected to control and thawed conditions were analysed by semiquantitive reverse transcription polymerase chain reaction methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNA were higher thawed embryos than control embryos. Immunocytochemistry used to localization the hsp70 protein in embryos. Two, 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed frozen-thawed. However, under control condition, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform in distribution.

  • PDF

Production of Bovine Transgenic Embryos Derived from Non-transfected and Transfected Adult Cells (외부유전자가 도입된 체세포를 이용한 소 형질전환 복제란 생산)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;Park, E. S.;J. M. Lim;S. K. Kang;Lee, B. C.;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows those secrete human lactoferricin into milk by somatic cell nuclear transfer (NT). To estimate detrimental effects of gene transfection on transgenic cloned embryo production, development rates of NT embryos were compared between transfected and non-transfected cumulus and ear fibroblast cells. An expression plasmid for human lactofericin (pbeta-LFC) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human lactoferricin target gene into a pcDNA3 plasmid. Two bovine somatic cell lines (cumulus cell and ear fibroblast) were established and transfected with the expression plasmid using a liposomal transfection reagent, Fugene6 as a carrier. Cumulus cell and ear fibroblast were transfected at the passage of 2 to 4, trypsinized and GFP-expressing cells were randomly selected and used for somatic cell NT. Developmental competences (rates of fusion, cleavage, and blastocyst formation) in bovine transgenic somatic cell NT embryos reconstructed with non-transfectecd cells were significantly higher than those from transfected cells in cumulus cell and ear fibroblast (P<0.05). This study indicated that transfection of done. cell has detrimental effect on embryo development in bovine transgenic NT.

Human embryos derived from first polar body nuclear transfer exhibit comparatively abnormal morphokinetics during development

  • Leila Heydari;Mohammad Ali Khalili;Azam Agha Rahimi;Fatemeh Shakeri
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.177-184
    • /
    • 2023
  • Objective: Reconstructed oocytes after polar body genome transfer constitute a potential therapeutic option for patients with a history of embryo fragmentation and advanced maternal age. However, the rescue of genetic material from the first polar body (PB1) through introduction into the donor cytoplasm is not yet ready for clinical application. Methods: Eighty-five oocytes were obtained following in vitro maturation (IVM) and divided into two groups: PB1 nuclear transfer (PB1NT; n=54) and control (n=31). Following enucleation and PB1 genomic transfer, PB1 fusion was assessed. Subsequently, all fused oocytes underwent intracytoplasmic sperm injection (ICSI) and were cultured in an incubator under a time-lapse monitoring system to evaluate fertilization, embryonic morphokinetic parameters, and cleavage patterns. Results: Following enucleation and fusion, 77.14% of oocytes survived, and 92.59% of polar bodies (PBs) fused. However, the normal fertilization rate was lower in the PB1NT group than in the control group (56.41% vs. 92%, p=0.002). No significant differences were observed in embryo kinetics between the groups, but a significant difference was detected in embryo developmental arrest after the four-cell stage, along with abnormal cleavage division in the PB1NT group. This was followed by significant between-group differences in the implantation potential rate and euploidy status. Most embryos in the PB1NT group had at least one abnormal cleavage division (93.3%, p=0.001). Conclusion: Fresh PB1NT oocytes successfully produced normal zygotes following PB fusion and ICSI in IVM oocytes. However, this was accompanied by low efficiency in developing into cleavage embryos, along with an increase in abnormal cleavage patterns.

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Effect of Demecolcine-Assisted Enucleation and Recipient Cell Cycle Stage on the Development of Nuclear Transfer Bovine Embryos (Demecolcine 처리에 의한 탈핵과 수핵란 세포질의 세포 주기가 소 핵이식란의 발육에 미치는 영향)

  • Back J. J.;Park C. K.;Yang B. K.;Kim C. I.;Cheong H. T.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • This study was conducted to examine the effects of demecolcine-assisted enucleation and recipient cell cycle stage on the development of bovine somatic cell nuclear transfer (NT) embryos. In vitro cultured oocytes for $16\~20$ h were classified by first polar body (1st PB) extrusion and cell cycle stage (MI and MII) and treated $0.4\;{\mu}L/mL$ demecolcine for 40 min before enucleation. Enucleated oocytes were fused electrically with bovine ear skin cells, activated by Ca-ionophore+DMAP, and cultured in vitro. Most of eggs ($86.2\%$) treated with demecolcine protruded a chromosome mass and enucleated efficiently ($98.8\%$, (P<0.05). Demecolcine did not have a deteriorative effect on the development of NT embryos. Developmental rate of NT embryos reconstituted with oocytes extruded 1st PB significantly higher than that of NT embryos produced by oocytes without 1st PB ($18.2\%\;vs.\;4.6\%\cdot$, P<0.05). Cleavage and blastocyst formation rate of embryos reconstituted with MI oocytes ($69.4\%\;and\;5.9\%$, respectively) were significantly lower than those of embryos reconstituted with MII oocytes ($96.7\%\;and\;23.9\%$, respectively, P<0.05). From the present result, it is suggested that domecolcine is useful for the enucleation of recipient oocytes in bovine NT procedures, and MII oocytes rather than MI oocytes are more appropriate for recipient cytoplasm. Although, the potential to develop into blastocysts of NT embryos produced by 1st PB-nonextruded and MI oocytes was very low, these oorytes could be used for NT.