• 제목/요약/키워드: NSGA3

검색결과 25건 처리시간 0.023초

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용 (Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering)

  • 구보영;김태순;정일원;배덕효
    • 한국수자원학회논문집
    • /
    • 제40권9호
    • /
    • pp.687-696
    • /
    • 2007
  • 본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을 최우선해로 선정하였다. NSGA-II로 도출된 최우선해의 적합성을 살펴보기 위해서, 자동보정방법인 Powell 방법과 SGA(simple genetic algorithm)를 매개변수 자동보정 방법으로 이용하고 하나의 단일목적함수로 사용해서 최적화한 결과와 비교해보았으며, 비교결과 다목적 유전자 알고리즘을 4개의 목적함수에 모두 적용해서 한번에 도출된 매개변수를 이용한 결과가 보정기간뿐만 아니라 검정기간에 대해서도 비교적 양호한 결과를 나타내는 것으로 나타났다.

NSGA-II를 이용한 한국해군 함정 운용계획에 대한 연구 (A Study on the Operational Scheduling for ROK's Navy Ships Using NSGA-II)

  • 정환식;이재영;이용대
    • 한국시뮬레이션학회논문지
    • /
    • 제19권3호
    • /
    • pp.55-62
    • /
    • 2010
  • 본 연구는 한국해군의 함정 운용을 효율적으로 계획하는 문제이다. 가용성은 임의의 한 시점에 무장, 항해, 그리고 추진장비와 같이 함정 내 주요 시스템들이 작전운용 요구수준을 만족하는 상태로 정의할 수 있다. 제한된 자원 및 정비 시설 하에서 함정의 가용성을 극대화한다는 것은 대한민국 해군의 전투력 향상에 중요한 역할을 담당한다. 그러나 가용성의 극대화만을 추구한 나머지 일부 함정들을 무리하게 운용하여 해당함정의 집중 마모를 야기할 수 있다. 이는 다른 함정들에게도 영향을 미쳐 계획된 정비를 받지 못하여 전체적으로 함정의 가용성을 저하시킬 수 있다. 본 연구에서는 NSGA-II 알고리즘을 적용하여 함정별 가용기간을 평준화하고, 가용기간에 따른 정비확률을 고려한 효율적인 함정 운용 계획을 제시하였다. 실험 결과 1500세대 이후 안정화된 결과들을 도출하였다. 안정화된 결과들 중에서 2개의 결과를 선택하여 각 목적별로 차이점을 비교 제시하였다.

A Temporal Convolutional Network for Hotel Demand Prediction Based on NSGA3 Feature Selection

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권10호
    • /
    • pp.121-128
    • /
    • 2024
  • 수요 예측은 관광 산업에서 수익 관리의 중요한 요소이다. 2010년대 이후 관광 산업의 세계화와 SNS와 같은 다양한 형태의 마케팅 및 정보 공유가 증가함에 따라 비선형 활동과 비정형 정보로 인해 예측이 어려워졌다. 이러한 문제를 해결하기 위한 다양한 예측 모델이 연구되었으며, 기계 학습(ML) 모델이 효과적으로 사용되었다. 본 연구에서는 특징 선택 기법(NSGA3)을 시계열 모델에 적용하고 성능을 비교하였다. 호텔 수요 예측에서 TCN 모델은 MAPE 9.73%로, 특징 선택을 적용하지 않았을 때보다 7.05% 성능이 향상된 높은 예측 성능을 보였다. 본 연구 결과는 향상된 예측 성능을 통해 의사결정 지원에 유용할 것으로 기대된다.

크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용 (Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps)

  • 정종현;백석흠;서용권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.893-904
    • /
    • 2013
  • NSGA-II와 함께 크리깅 메타모델기반 다목적최적설계 전략을 3차원 CFD 시뮬레이션을 통해 액셜 피스톤 펌프의 밸브 플레이트 형상을 최적화하는데 적용하였다. 펌프의 압력 변동을 저감하고 수력 효율을 최대화하기 위한 최적설계 과정은 두 단계, 즉 (1) 밸브 플레이트 상의 6개 형상 설계 변수를 선정하고 각 설계변수의 변화에 따른 CFD 해석을 수행하며, (2) CFD 데이터를 이용한 NSGA-II에 기반한 다목적최적설계 접근방식으로 최소 맥동 압력과 펌프 효율 설계에 대해 파레토 프론트를 평가하는 것으로 구성된다. 이들 결과로부터 최소 맥동 압력을 가지며 액셜 피스톤 펌프의 목표 효율에 도달하는 최적 절충해를 선택할 수 있었다.

다중모드 Cognitive Radio 통신 시스템을 위한 GBNSGA 최적화 알고리즘 (GBNSGA Optimization Algorithm for Multi-mode Cognitive Radio Communication Systems)

  • 박준수;박순규;김진업;김형중;이원철
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.314-322
    • /
    • 2007
  • 본 논문에서는 CR(Cognitive Radio)을 위해 사용자에게 최적의 통신 시스템 구성 변수들을 할당하기 위한 새로운 최적화 알고리즘인 GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm)를 제안한다. 다중모드 선택적 CR 통신을 위해 사용되는 cognitive 엔진은 Mitola가 제안한 cognition 싸이클의 많은 논리 연산과정이 필요하다는 단점을 보완하기 위하여 일반적으로 유전자 알고리즘 기반의 접근 방식이 사용되고 있다. 본 논문에서는 cognitive 엔진의 효율적인 구동을 위하여 파레토(Pareto) 기반의 최적화 알고리즘인 NSGA(Non-dominated Sorting Genetic Algorithm)와 사용자 서비스의 요구사항을 goal로 설정하는 GP(Goal Programming)을 결합한 새로운 최적화 방법으로 GBNSGA를 제안하였으며, 시뮬레이션 수행을 통해 제안된 알고리즘이 요구사항에 적합한 다양한 해를 제공하고 최적화 수렴속도가 빠르다는 것을 확인하였다.

자동차용 휠의 응력을 고려한 근사 최적 설계 (Approximate Optimization Design Considering Automotive Wheel Stress)

  • 이현석;이종수
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

축하중을 고려한 스크롤 압축기 하부 프레임의 최적설계 (Approximate Multi-Objective Optimization of Scroll Compressor Lower Frame Considering the Axial Load)

  • 김정환;이종수
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.308-313
    • /
    • 2015
  • In this research, a multi-objective optimal design of a scroll compressor lower frame was approximated, and the design parameters of the lower frame were selected. The sensitivity of the design parameters was induced through a parameter analysis, and the thickness was determined to be the most sensitive parameter to stress and deflection. All of the design parameters regarding the mass are sensitive factors. It was formulated for the problem about stress and deflection to be caused by the axial load. The sensitivity of the design variables was determined using an orthogonal array for the parameter analysis. Using the central composite and D-optimal designs, a second polynomial approximation of the objective and constraint functions was formulated and the accuracy was verified through an R-square. These functions were applied to the optimal design program (NSGA-II). Through a CAE analysis, the effectiveness of the central composite and D-optimal designs was determined.

비지배 정렬 유전 알고리즘-II를 이용한 145 kV급 축소형 경사기능성 적용 스페이서의 유전율 분포 최적화 방법론 (Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II)

  • 노요한;김승현;정종훈;조한구
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.225-230
    • /
    • 2020
  • Recently, with the miniaturization of GIS, there is a need for the miniaturization of spacers as accessories. Miniaturized spacers make it difficult to secure adequate insulation distances, resulting in a more concentrated electric field at the triple junction of high-voltage (HV) conductor-insulator (spacer)-insulation gas (SF6), which is a weakness in GIS. Therefore, by introducing a new concept design technology, functionally graded material (FGM), which is recently applied to various materials and parts industries, three-dimensional control of the dielectric constant distribution in a spacer can be expected to alleviate triple-junction electric field occupancy and improve insulation performance. In this study, we propose an optimized model using NSGA-II to optimize the permittivity distribution of FGM applied spacer.

Optimizing Bi-Objective Multi-Echelon Multi-Product Supply Chain Network Design Using New Pareto-Based Approaches

  • Jafari, Hamid Reza;Seifbarghy, Mehdi
    • Industrial Engineering and Management Systems
    • /
    • 제15권4호
    • /
    • pp.374-384
    • /
    • 2016
  • The efficiency of a supply chain can be extremely affected by its design which includes determining the flow pattern of material from suppliers to costumers, selecting the suppliers, and defining the opened facilities in network. In this paper, a multi-objective multi-echelon multi-product supply chain design model is proposed in which several suppliers, several manufacturers, several distribution centers as different stages of supply chain cooperate with each other to satisfy various costumers' demands. The multi-objectives of this model which considered simultaneously are 1-minimize the total cost of supply chain including production cost, transportation cost, shortage cost, and costs of opening a facility, 2-minimize the transportation time from suppliers to costumers, and 3-maximize the service level of the system by minimizing the maximum level of shortages. To configure this model a graph theoretic approach is used by considering channels among each two facilities as links and each facility as the nodes in this configuration. Based on complexity of the proposed model a multi-objective Pareto-based vibration damping optimization (VDO) algorithm is applied to solve the model and finally non-dominated sorting genetic algorithm (NSGA-II) is also applied to evaluate the performance of MOVDO. The results indicated the effectiveness of the proposed MOVDO to solve the model.