• Title, Summary, Keyword: NSGA II

Search Result 86, Processing Time 0.047 seconds

Goal-Pareto based NSGA-II Algorithm for Multiobjective Optimization (다목적 최적화를 위한 Goal-Pareto 기반의 NSGA-II 알고리즘)

  • Park, Soon-Kyu;Lee, Su-Bok;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1079-1085
    • /
    • 2007
  • This Paper Proposes a new optimization algorithm named by GBNSGA-II(Goal-pareto Based Non-dominated Sorting Genetic Algorithm-II) which uses Goal Programming to find non-dominated solutions in NSGA-II. Although the conventional NSGA is very popular to solve multiobjective optimization problem, its high computational complexity, lack of elitism and difficulty of selecting sharing parameter have been considered as problems to be overcome. To overcome these problems, NSGA-II has been introduced as the alternative for multiobjective optimization algorithm preventing aforementioned defects arising in the conventional NSGA. Together with advantageous features of NSGA-II, this paper proposes rather effective optimization algorithm formulated by purposely combining NSGA-II algorithm with GP (Goal Programming) subject to satisfying multiple objectives as possible as it can. By conducting computer simulations, the superiority of the proposed GBNSGA-II algorithm will be verified in the aspects of the effectiveness on optimization process in presence of a priori constrained goals and its fast converging capability.

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

DNA Sequence Design using $\varepsilon$ -Multiobjective Evolutionary Algorithm ($\varepsilon$-다중목적함수 진화 알고리즘을 이용한 DNA 서열 디자인)

  • Shin Soo-Yong;Lee In-Hee;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1217-1228
    • /
    • 2005
  • Recently, since DNA computing has been widely studied for various applications, DNA sequence design which is the most basic and important step for DNA computing has been highlighted. In previous works, DNA sequence design has been formulated as a multi-objective optimization task, and solved by elitist non-dominated sorting genetic algorithm (NSGA-II). However, NSGA-II needed lots of computational time. Therefore, we use an $\varepsilon$- multiobjective evolutionarv algorithm ($\varepsilon$-MOEA) to overcome the drawbacks of NSGA-II in this paper. To compare the performance of two algorithms in detail, we apply both algorithms to the DTLZ2 benchmark function. $\varepsilon$-MOEA outperformed NSGA-II in both convergence and diversity, $70\%$ and $73\%$ respectively. Especially, $\varepsilon$-MOEA finds optimal solutions using small computational time. Based on these results, we redesign the DNA sequences generated by the previous DNA sequence design tools and the DNA sequences for the 7-travelling salesman problem (TSP). The experimental results show that $\varepsilon$-MOEA outperforms the most cases. Especially, for 7-TSP, $\varepsilon$-MOEA achieves the comparative results two tines faster while finding $22\%$ improved diversity and $92\%$ improved convergence in final solutions using the same time.

Optimization of Micro Hydro Propeller Turbine blade using NSGA-II (NSGA-II를 이용한 마이크로 프로펠러 수차 블레이드 최적화)

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.19-29
    • /
    • 2014
  • In addition to the development of micro hydro turbine, the challenge in micro hydro turbine design as sustainable hydro devices is focused on the optimization of turbine runner blade which have decisive effect on the turbine performance to reach higher efficiency. A multi-objective optimization method to optimize the performance of runner blade of propeller turbine for micro turbine has been studied. For the initial design of planar blade cascade, singularity distribution method and the combination of the Bezier curve parametric technology is used. A non-dominated sorting genetic algorithm II(NSGA II) is developed based on the multi-objective optimization design method. The comparision with model test show that the blade charachteristics is optimized by NSGA-II has a good efficiency and load distribution. From model test and scale up calculation, the maximum prototype efficiency of the runner blade reaches as high as 90.87%.

Development of Automatic SWAT Calibration Algorithm Using NSGA-II Algorithm (NSGA-II를 활용한 SWAT 모형의 검보정 알고리즘 개발)

  • Lee, Yong Gwan;Jung, Chung Gil;Kim, Se Hoon;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.34-34
    • /
    • 2018
  • 본 연구는 다목적 유전자 알고리즘 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)를 활용하여 자동 검보정 알고리즘을 개발하고, 이를 준분포형 수문모형인 SWAT (Soil and Water Assessment Tool) 모형에 적용하여 평가하고자 한다. 집중형 모형과 달리, 분포형 모형은 유역 내 다양한 물리적 변수와 공간 이질성(spatial heterogeneity)을 표현하기 위한 많은 매개변수를 포함하고 있고, 최근에는 기후 변화와 장기 가뭄과 같은 이상 기후에 따른 물 부족, 수질 오염 및 녹조 현상 등을 고려하기 위해 매개변수의 시간적인 변동성을 고려하기 위한 연구도 수행되고 있다. 이에 따라 본 연구에서 개발한 다목적 알고리즘은 다양한 매개변수의 시공간적 특성을 고려할 수 있도록 작성되었으며, Python으로 개발하여 타 모형으로의 확장성 및 범용성을 고려하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 IOA(Index of agreement) 등을 활용해 기존 연구 결과와 비교분석할 수 있도록 하였으며, 사용자의 선택에 따라 다른 목적함수 또한 활용할 수 있도록 하였다. NSGA-II를 활용한 SWAT 모형의 유출 해석은 다목적 함수를 고려함에 따라 실측값과 높은 상관성을 보여줄 것으로 판단되며, 이상 기후 기간 설정에 따른 유동적인 매개변수 변화를 적용할 수 있을 것으로 기대된다.

  • PDF

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.