• Title/Summary/Keyword: NSF

Search Result 104, Processing Time 0.026 seconds

Localizd Failure and Fracture energies in Concrete under Compression (압축 응력 하에서의 콘크리트의 파괴거동)

  • 최석환
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.165-174
    • /
    • 1997
  • 고강도 및 보통강도 콘크리트의 압축파괴 거동에 영향을 미치는 요소들 (재료의 강도, 시편의 세장비, 전단구속, 실험장치의 강성, 피드백 신호)에 관한 연구가 수행되었다. 피드백 신호로 자동 조절되는 유압 실험기계항에서 원주변형 피드백 신호를 사용하여 연화곡선을 구했다. 재하장치로부터의 단부 전단 구속을 줄이면 제한된 영역 안에서 재하방향 균형이 형성되고, 또한 연화곡선의 경사가 급해지고 파괴에너지도 작아진다. 이때 길이가 큰 시편에서 파괴에너지가 커지는 것은 안장과는 달리 단순균열이 형성되는 것이 아니고 , 파괴가 용적을 가진다는 것을 의미한다. 압축응력하의 국부 파괴는 재료특성이 아니므로, 단부 전단구속이 없더라도 재료적 특성으로서의 응력-변형도 곡선은 정하기 어렵다.

Teaching Mathematics Based on Children's Cognition: Introduction to Cognitively Guided Instruction in U.S. (아동들의 인지를 바탕으로 한 수학 교수: 미국의 Cognitively Guided Instruction의 소개)

  • Baek Jae Meen
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.4
    • /
    • pp.421-434
    • /
    • 2004
  • Cognitively Guided Instruction (CGI) is one of the most successful professional development programs for elementary mathematics teachers in US. This article introduces its theoretical background, research-based framework of addition and subtraction work, and how the program has been disseminated. Carpenter and Fennema started CGI aiming to develop a professional development program that focused on research knowledge of children"s thinking. Their goal was. to bring a significant change in teaching by helping teachers understand how children think mathematically. This 3-year NSF funded project grew to be 11-year long, and a number of publications have reported consistent successful learning and teaching by CGI students and teachers compared to counterparts throughout US. CGI′s success by focusing on improving teachers′ knowledge of children′s thinking offers possible opportunities for teacher educators to re-conceptualize teacher education in Korea.

  • PDF

Generation Of High-Resolution Precise Dems Of The Antarctic Dry Valleys And Its Vicinity Based On Lidar Surveys

  • Lee, Impyeong;Park, Yunsoo;Park, Hong-Gi;Cho, Young-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.38-44
    • /
    • 2004
  • NASA, NSF and USGS jointly conducted LIDAR surveys to acquire numerous surface points with high densities over the Antarctic Dry Valleys and its vicinity. The huge set of the points unusually includes many blunders, retaining large variation of the point densities. Hence, to reduce the undesirable effects due to these characteristics and process the huge number of points with reasonable time and resources, we developed an efficient, robust, nearly automatic approach to DEM generation. This paper reports about the application of this approach to generating high-resolution precise DEMs from the Antarctic LIDAR surveys and the evaluation of their accuracy.

  • PDF

The Study on the Sale Form Selection in the Sale and Purchase of Second Hand Ships (중고선박 매매계약의 선택기준에 대한 연구)

  • Cho, Jae-Kee;Kim, Junseung;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.1
    • /
    • pp.59-76
    • /
    • 2020
  • The purpose of this study is to analyze the factors of the main selection criteria of the contract form used to conclude the sales contracts of used ships and to assist parties in selecting the most suitable contract form for trading situations. The methods of the study are based on identifying the factors from the questionnaires using analytic hierarchy process analysis, following the selection of typical details through interviews with the S&P Broker Group and finding the solutions that match each detail. The analysis shows that ship traders prefer the Norwegian Sales Form (NSF) to NIPPONSALE for various reasons. Considering the sellers' situations, NFS is the more reasonable option for major countries, except Japan. NIPPONSALE is relatively more focused on the advantages of the buyer's conditions, including for Japan. It is important to select the appropriate clauses from these types of contract, according to the trading conditions, including the main and additional terms, in order to create a mutual agreement between the shipper and the consignee that leads to more cooperation and balances the purposes of both parties in adjusting the time for securing and disposing of the vessels.

Analysis on New Research Opportunities and Strategies for Earth Sciences in the United States (미국 지질과학분야 신규 연구주제 및 전략분석)

  • Kim, Seong-Yong;Ahn, Eun-Young;Bae, Jun-Hee;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • The essential role of the Division of Earth Sciences(EAR) in the Directorate of Geoscience(GEO) of National Science Foundation of America(NSF) is to support basic research aimed at acquiring fundamental knowledge of the Earth system that can be directly applied to the United States' strategic needs. The 2011 Committee on New Research Opportunities in the Earth Sciences(NROES) of the National Academy of Sciences(NAS) identified specific areas of the basic earth science research scope of the EAR that were poised for rapid progress during the next decade. Quantified by interdisciplinary approaches, the Committee highlighted the following topics relating to the EAR Deep Earth Processes and Surface Earth Processes sections: (1) the early Earth; (2) thermochemical internal dynamics and volatile distribution; (3) faulting and deformation processes; (4) interactions among climate, the Earth surface processes, tectonics, and deep Earth processes; (5) co-evolution of life, environment, and climate; (6) coupled hydrogeomorphic-ecosystem response to natural and anthropogenic change; and (7) interactions of biogeochemical and water cycles in terrestrial environments. We also promote future research challenges such as the critical zone studies. In order to promote more active such a huge future research challenges, additional research support policies are needed.

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo;Mateo, Ronald D.;Yin, Yu-Long;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2007
  • The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).

Large Scale Directed Assembly of SWNTs and Nanoparticles for Electronics and Biotechnology

  • Busnaina, Ahmed;Smith, W.L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.9-9
    • /
    • 2011
  • The transfer of nano-science accomplishments into technology is severely hindered by a lack of understanding of barriers to nanoscale manufacturing. The NSF Center for High-rate Nanomanufacturing (CHN) is developing tools and processes to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The center has developed templates with nanofeatures to direct the assembly of carbon nanotubes and nanoparticles (down to 10 nm) into nanoscale trenches in a short time (in seconds) and over a large area (measured in inches). The center has demonstrated that nanotemplates can be used to pattern conducting polymers and that the patterned polymer can be transferred onto a second polymer substrate. Recently, a fast and highly scalable process for fabricating interconnects from CMOS and other types of interconnects has been developed using metallic nanoparticles. The particles are precisely assembled into the vias from the suspension and then fused in a room temperature process creating nanoscale interconnect. The center has many applications where the technology has been demonstrated. For example, the nonvolatile memory switches using (SWNTs) or molecules assembled on a wafer level. A new biosensor chip (0.02 $mm^2$) capable of detecting multiple biomarkers simultaneously and can be in vitro and in vivo with a detection limit that's 200 times lower than current technology. The center has developed the fundamental science and engineering platform necessary to manufacture a wide array of applications ranging from electronics, energy, and materials to biotechnology.

  • PDF

R&D Trends Monitoring through Scanning Public R&D Investments: The Case of Information & Communication Technology (ICT) in Meteorology and Climatology

  • Heo, Yoseob;Kim, Hyunwoo;Kim, Jungjoon;Kang, Jongseok
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.315-329
    • /
    • 2016
  • Public R&D investment information has diverse implications for researching R&D trends. Also, as it is important for the establishment of R&D policy to grasp the current situation and trends of R&D to improve science and technology level, science and technology information service system, such as NTIS (National Science & Technology Information Service), is operated at a national level in most countries. However, since the data forms provided by current NTIS are raw data, it is necessary to develop the R&D performance indicator or to use additional scientometric methods by analyzing scientific papers or scientific R&D project information for grasping R&D trends or analyzing R&D task results. Thus, this study applied public R&D investment information to investigate and monitor R&D trends in the field of information & communication technology (ICT) of meteorology and climatology by using NTIS data of Korea and NSF (National Science Foundation) data of USA.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Plasticity of rice to water extremes: Farmers' genes to mechanisms

  • Bailey-Serres, Julia
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.5-5
    • /
    • 2017
  • Too little and too much water due to climatic events is a significant cause of global food insecurity. Crops are less productive under water-limited conditions and all major crops, with the exception of rice (Oryza sativa), die within a few days of complete submergence. To complement our studies on genes such as SUB1A, (an ERF-VII transcription factor that provides robust submergence tolerance) and AG1 (a TREHALOSE 6-P PHOSPHATASE that promotes establishment of young seedlings underwater), we have retooled INTACT (${\underline{I}}solation$ of ${\underline{N}}uclei$ ${\underline{TA}}gged$ in specific ${\underline{C}}ell$ ${\underline{T}}ypes$) and TRAP (${\underline{T}}ranslating$ ${\underline{R}}ibosome$ ${\underline{A}}ffinity$ ${\underline{P}}urification$) for rice. These technologies enable us to follow dynamics in chromatin, nuclear pre-mRNAs and ribosome-bound mRNAs in meristems and diverse cell types. With these technologies we can better interpret responses to stresses and reestablishment of homeostasis. These include stress acclimation strategies involving changes in metabolism and development, such as dynamics in suberin deposition in sub-epidermal layers of roots that limit water loss under drought and oxygen escape during waterlogging. Our new data uncover dynamic and reversible regulation at multiple levels of gene regulation and provide new insights into processes of stress resilience. Supported by US NSF-PGRP Plasticity (IOS-1238243), Secretome (IOS-1546879) and REU (DBI-146129) grants.

  • PDF