• Title/Summary/Keyword: NS2B

Search Result 240, Processing Time 0.025 seconds

The Two-Component Protease NS2B-NS3 of Dengue Virus Type 2: Cloning, Expression in Escherichia coli and Purification of the NS2B, NS3(pro) and NS2B-NS3 Proteins

  • Champreda, Veerawat;Khumthong, Rabuesak;Subsin, Benchamas;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • Proteolytic processing of the dengue virus serotype 2 polyprotein precursor is catalyzed by a host signal peptidase and a virus encoded two-component protease consisting of the nonstructural proteins, NS2B and NS3. We expressed in Escherichia coli the NS2B, NS3(pro) and NS2B-NS3 proteins from the dengue virus type 2 strain 16681 as N-terminal fusions with a hexahistidine affinity tag under the control of the inducible trc promoter. All fusion proteins were purified to >90% purity by detergent extraction of inclusion bodies and a single step metal chelate chromatography. Proteins were refolded on-column and recovered with yields of 0.5, 6.0 and 1.0 mg/l of E. coli culture that was grown to $OD_{600}=1.0$ for NS2B, NS3(pro) and NS2B-NS3, respectively. Purified proteins gave strong signals in Western blots using $Ni^{2+}-nitrilotriacetic$ acid as a probe for the presence of the polyHis tag. During the purification process, $(His)_{6}NS2B-NS3$ was apparently not autoproteolytically cleaved at the NS2B/NS3 site.

  • PDF

In Vitro Determination of Dengue Virus Type 2 NS2B-NS3 Protease Activity with Fluorescent Peptide Substrates

  • Khumthong, Rabuesak;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.206-212
    • /
    • 2002
  • The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2B-NS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.

Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity

  • Lee, Jeong Yoon;Nguyen, Thi Thuy Ngan;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1651-1658
    • /
    • 2020
  • Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.

Solution Conformations of the Substrates and Inhibitor of Hepatitis C Virus NS3 Protease

  • 이정훈;방근수;정진원;안인애;노성구;이원태
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 1999
  • Hepatitis C virus (HCV) has been known to be an enveloped virus with a positive strand RNA genome and the major agent of the vast majority of transfusion associated cases of hepatitis. For viral replication, HCV structural proteins are first processed by host cell signal peptidases and NS2/NS3 site of the nonstructural protein is cleaved by a zinc-dependent protease NS2 with N-terminal NS3. The four remaining junctions are cleaved by a separate NS3 protease. The solution conformations of NS4B/5A, NS5A/5B substrates and NS5A/5B inhibitor have been determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. NMR data suggested that the both NS5A/5B substrate and inhibitor appeared to have a folded tum-like conformation not only between P1 and P6 position but also C-terminal region, whereas the NS4B/5A substrate exhibited mostly extended conformation. In addition, we have found that the conformation of the NS5A/5B inhibitor slightly differs from that of NS5A/5B substrate peptide, suggesting different binding mode for NS3 protease. These findings will be of importance for designing efficient inhibitor to suppress HCV processing.

Dengue Virus 2 NS2B Targets MAVS and IKKε to Evade the Antiviral Innate Immune Response

  • Ying Nie;Dongqing Deng;Lumin Mou;Qizhou Long;Jinzhi Chen;Jiahong Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.600-606
    • /
    • 2023
  • Dengue virus (DENV) is a widespread arbovirus. To efficiently establish infection, DENV evolves multiple strategies to hijack the host innate immune response. Herein, we examined the inhibitory effects of DENV serotype 2 (DENV2) nonstructural proteins on RIG-I-directed antiviral immune response. We found that DENV2 NS2A, NS2B, NS4A, and NS4B significantly inhibited RIG-I-mediated IFN-β promoter activation. The roles of NS2B in RIG-I-directed antiviral immune response are unknown. Our study further showed that NS2B could dose-dependently suppress RIG-I/MAVS-induced activation of IFN-β promoter. Consistently, NS2B significantly decreased RIG-I- and MAVS-induced transcription of IFNB1, ISG15, and ISG56. Mechanistically, NS2B was found to interact with MAVS and IKKε to impair RIG-I-directed antiviral response. Our findings demonstrated a previously uncharacterized function of NS2B in RIG-I-mediated antiviral response, making it a promising drug target for anti-DENV treatments.

Design and Implementation of Dielectric Resonator Bandpass Filters with Various Time-Delay (다양한 시간지연을 갖는 유전체 공진기 대역통과 필터의 구현)

  • Choi, U-Sung;Park, Noh-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2397-2402
    • /
    • 2010
  • Dielectric resonator bandpass filters with various time-delay at 800MHz were designed and fabricated in this paper. from the results of this study. first of all, good response. characteristics were measured for all cases. The insertion loss was below 2dB and flatness for ripple was below 0.2dB, whereas return loss was over 20dB, respectively. The measured delay time of the fabricated prototype were 6ns, 12ns and 200s, respectively and the flatness characteristics did not exceeding Ins for all cases. Furthermore, 2~4ns of flatness were measured for 2-hole dielectric block and other dielectric resonator filters with various delay time by combination of each prototypes filters were also implemented.

Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate

  • Kim, Chunglee;Perera, Benetge Bhakthi Pranama;McLaughlin, Maura A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.88.4-89
    • /
    • 2015
  • The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate $R_g$ among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on $R_g$ using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain $R_g=21_{-14}{^+28}$ per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be $8_{-5}{^+10}$ per yr at 95 per cent confidence. We discuss prospects of gravitational-wave detection based on our results. Implications of PSR J1906+0746, which is likely to be another tight NS-NS binary in the Galactic disc supported by recent observation, are also remarked.

  • PDF

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Purification and Characterization of HCV RNA-dependent RNA Polymerase from Korean Genotype 1b Isolate: Implications for Discovery of HCV Polymerase Inhibitors

  • Kim, Jeong-Min;Lee, Mi-Kyoung;Kim, Yong-Zu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.285-291
    • /
    • 2005
  • The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is the viral RNA-dependent RNA polymerase (RdRp), which is the essential catalytic enzyme for the viral replication and is an appealing target for the development of new therapeutic agents against HCV infection. A small amount of serum from a single patient with hepatitis C was used to get the genome of a Korean HCV isolate. Sequence analysis of NS5B 1701 nucleotides showed the genotype of a Korean isolate to be subtype 1b. The soluble recombinant HCV NS5B polymerase lacking the C-terminal 24 amino acids was expressed and purified to homogeneity. With the highly purified NS5B protein, we established in vitro systems for RdRp activity to identify potential polymerase inhibitors. The rhodanine family compounds were found to be potent and specific inhibitors of NS5B from high throughput screening (HTS) assay utilizing the scintillation proximity assay (SPA) system. The binding mode of an inhibitor was analyzed by measuring various kinetic parameters. Lineweaver-Burk plots of the inhibitor suggested it binds not to the active site of NS5B polymerase, but to an allosteric site of the enzyme. The activity of NS5B in in vitro polymerase reactions with homopolymeric RNA requires interaction with multiple substrates that include a template/primer and ribonucleotide triphosphate. Steady-state kinetic parameter, such as Km, was determined for the ribonucleotide triphosphate. One of compounds found interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitively with respect to UTP. Furthermore, we also investigated the ability of the compound to inhibit NS5B-directed viral RNA replication using the Huh7 cell-based HCV replicon system. The investigation is potentially very useful for the utility of such compounds as anti-hepatitic agents.