• Title/Summary/Keyword: NRTL Liquid Activity Coefficient Model

Search Result 10, Processing Time 0.024 seconds

A Comparative Study on the Prediction of Vapor-Liquid Equilibria for the Ethanol-Benzene Mixture between Equation of State Model and Liquid Activity Coefficient Model (비이상적 상거동을 보이는 이성분계 혼합물의 기액 상평형 추산을 위한 상태방정식과 액체 활동도계수 모델 사이의 비교연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1747-1753
    • /
    • 2010
  • In this study, a comparative study was performed to predict the vapor-liquid equilibria with maximum azeotropic pressure for ethanol-benzene binary system between an equation of state model and a liquid activity coefficient model. Peng-Robinson equation of state model with a Panatiotopoulos mixing rules (PRP) was used and NRTL liquid activity coefficient model proposed by Renon was selected. The PRP model, even though it has only two binary adjustable parameters, was not inferior to the NRTL model to predict vapor-liquid equilibria for low pressure region of ethanol-benzene system and showed a better prediction capability for high pressure region of ethanol-benzene system than the NRTL model with three binary interaction parameters.

A Study on the Simulation of Toluene Recovery Process using Sulfolane as a Solvent (Sulfolane 용매를 이용한 톨루엔 회수공정의 모사에 관한 연구)

  • Cho, Jungho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, computer modeling and simulation works were performed to obtain nearly pure toluene product from toluene containing non-aromatic compounds using sulfolane as a solvent through an extractive distillation process. NRTL liquid activity coefficient model was adopted for phase equilibrium calculations and Aspen Plus release 12.1, a commercial process simulator, was used to simulate the extractive distillation process. In this study, it was concluded that the toluene product with a purity of 99.8 percent by weight and a recovery of 99.65 percent was obtained through an extractive distillation process.

A Study on the Optimization of Process for Ethanol Dehydration Azeotropic Distillation (에탄올 탈수 공비 증류공정 최적화에 대한 연구)

  • Cho, Jungho;Jeon, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.474-481
    • /
    • 2005
  • In this study, modeling and optimization work were performed to obtain nearly pure anhydrous ethanol from aqueous ethanol mixtures using benzene as an entrainer. NRTL liquid activity coefficient model was adopted for phase equilibrium calculations and PRO/II with PROVISION 6.01, a commercial process simulator, was used to simulate the azeotropic distillation process. We used the total reboiler heat duties as an objective function and the concentration of ethanol at concentrator top as a manipulated variable. As a result, 76 mole percent of ethanol at concentrator top gave an optimum value which minimized the total reboiler heat duties of three distillation columns.

Extractive Distillation Process for the Production of Highly Purified Ethanol from Aqueous Solution using Dimethyl Sulfoxide and Ethylene Glycol (Dimethyl Sulfoxide와 Ethylene Glycol을 이용하여 에탄올 수용액으로부터 고순도 에탄올을 생산하기 위한 추출증류공정)

  • Noh, Sang-Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • In this study, comparative work has been performed between two-columns and three-columns configurations for an extractive distillation process to produce highly purified ethanol with not less than 99.7 wt% using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as extracting agents. Optimal ethanol concentration at a concentrator top stream which minimized the total reboiler heat duties was determined for a three-columns configuration for two different solvents. For the thermodynamic model, NRTL liquid activity coefficient model was used and PRO/II with PROVISION 9.4 at Schneider electric company was utilized. DMSO was proved to be a better solvent than EG and three-columns configuration is better than two- columns configuration in the total utility consumptions since some of the liquid water contained in the feed stream was removed at a concentrator bottom liquid stream.

Simulation of Separation and Purification Process of 50 kg/day Pilot Plant for DME Production (일일 50 kg DME 생산을 위한 파일럿 플랜트 분리 정제공정 모사)

  • Cho Jung-Ho;Cho Won-Il;Na Young-Jin;Shin Dong-Keun;Rhim Kye-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.22-26
    • /
    • 2006
  • In this study, modeling and simulation works using Aspen Plus were carried out for DME separation and purification process of pilot plant for the daily production of 50 kg of DME. For modeling of the entire DME separation unit, NRTL liquid activity coefficient model was used for the prediction of liquid phase non-idealities, Henry's law option was also used for the estimation of solubilities of light gases in solvents and SRK equation of state model was utilized for the description of vapor phase non-idealities. DME having over 98 wt% purity was obtained as a side distillate product in a DME purification column.

  • PDF

A Study on the Thermodynamic Analysis for the DME Separation Process (DME 분리공정의 열역학적 해석에 대한 연구)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.590-596
    • /
    • 2010
  • Through this study, we have attempted the thermodynamic analysis on the dimethyl ether (DME) separation process, which can be used for diesel alternative fuel, additive to LPG and natural gas. And we also have completed the simulation of DME separation process using PRO/II with PROVISION. As an appropriate thermodynamic models, we selected NRTL liquid activity coefficient model to describe the non-ideality between methanol and water. To estimate the vapor phase non-idealities, we have chosen the Peng-Robinson equation of state model. And we also use the Henry's law option to predict the solubilities of non-condensible gases like CO, $CO_2$, $H_2$, $CH_2$ and $N_2$ in methanol solvent. Case study showed that optimal solvent to feed molar ratio was 3.40

A Study on the Thermodynamic Analysis and the Computer Simulation for the $CO_2$ and $H_{2}S$ Capture Process Using Methanol as a Solvent (메탄올 용매를 이용한 이산화탄소와 황화수소 포집공정의 열역학적 해석 및 전산모사에 관한 연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, computer simulation works have been performed for the capture process of the $CO_2$ and $H_{2}S$ gases contained in the effluent stream using methanol aqueous solution. In order to increase the solubilities of the $CO_2$ and $H_{2}S$ in the methanol aqueous stream, the operating pressure of the absorber was raised to 30 bar and the feeding temperature of the solvent was lowered to $-20^{\circ}C$ by using refrigeration cycle. NRTL liquid activity coefficient model was used to estimate the liquid phase nonidealities for methanol and water. Soave-Redlich-Kwong equation of state was used for the vapor phase nonidealities. Henry's law option was also used to calculate the solubilities of the supercritical noncondensible gases into the methanol aqueous solvent stream.

  • PDF

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Solid-Liquid Equilibria and Excess Molar Volumes, Refractive Indices and Deviation in Viscosity for Binary Systems of C3-C6 Carboxylic Acids (Carboxylic acid 이성분계의 고-액 상평형과 과잉물성, 굴절률 및 점도 편차)

  • Gu, Ji-Eun;Oh, Ha-Young;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Recently, bio-butanol is being promoted as environmentally friendly sustainable energy. However, some problems are still obstacle for commercialization of bio-butanol: the development of cheap biomass and enhancement of fermentation ratio and preparation of economical separation process for fermented products. In the conventional ABE biobutanol fermentation process, organic acids with acetone, butanol, and ethanol are produced. Therefore, it is necessary to study phase equilibrium data and mixture properties for the design and operation of separation process. However, there is lack of design data for organic acids except acetic acid contained system. In this study, therefore, binary solid-liquid equilibria (SLE) and mixture properties: the excess molar volumes ($V^E$), molar refraction deviation (${\Delta}R$) and deviation of viscosity (${\Delta}v$) at 298.15 for $C_3-C_6$ organic acid were reported. The experimental SLE data were correlated with the NRTL and UNIQUAC activity coefficient model with less than 0.5 K of root mean square deviation (RMSD). In addition, $V^E$, ${\Delta}R$ and ${\Delta}v$ for the same binary systems were satisfactorily fitted using the Redlich-Kister polynomial with less than ca. 0.004 standard deviation.

Computer Simulation and Optimization Study on the Pressure-Swing Distillation of 1-propanol-benzene Mixture (1-프로판올과 벤젠 혼합물의 압력변환 증류공정을 통한 전산모사 및 공정 최적화)

  • Park, Hoey Kyung;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.88-97
    • /
    • 2018
  • Computer modeling and optimization works have been performed for the separation of the binary mixture of 1-propanol and benzene through a pressure-swing distillation. PRO/II with PRIVISION V10.0 at Schneider Electric company and NRTL liquid activity coefficient model were utilized. The sum of the total reboiler heat duties of the low-high and high-low pressure column configurations were compared. To minimize the utility consumptions, low column, and high column to obtain pure benzene at the top, the number of theoretical stages and optimal feed tray locations for each distillation column were determined and the reflux ratios for each distillation column were also adjusted. As a result of the optimization works, the sum of the total reboiler heat duties for the high-low and low-high pressure configurations were $3.10{\times}10^6kcal/h$ and $2.75{\times}10^6kcal/h$, respectively. In the case where heat integration was applied to low-high pressure configurations, 57.36 % of the total reboiler heat duties could be saved compared to the high-low pressure configurations.