• Title/Summary/Keyword: NPS Analysis

Search Result 331, Processing Time 0.034 seconds

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

Analysis of Water-quality Improvement Efficiency of Constructed Wetland Using NPS-WET Model (NPS-WET 모형을 이용한 인공습지의 수질정화효과 분석)

  • Rhee, Han-Pil;Jung, Kwang-Wook;Lee, Bok-Soo;Ham, Jong-Hwa;Son, Yeong-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.320-331
    • /
    • 2012
  • A combination system of catch canal and constructed wetland was designed and suggested to improve water quality in gagricultural region of lower Dong-jin river basin. In order to evaluate an water quality improvement efficiency of the designed combination system, the NPS-WET model was applied in this study. Simulation result of the NPS-WET shown that the nutrient load removal rate of constructed wetland was BOD, T-N, T-P and SS was 30.7~39.0%, 46~60%, 40.7~57.0% and 68.2~74.7%, respectively. Nutrients reduction of constructed wetland was higher in growing season than winter season because vital activity of microorganism, macrophyte and algae was augmented with high air and water temperature. Effluents from constructed wetland can affect water-quality of catch canal drains, especially, water-quality on junction point to Dong-jin river. Water-quality improvement in low-flowed catch canal (Un-san) was more significant than in high-flowed catch canal (Won-pyeong). In conclusion, a feasible design of constructed wetland is necessary to treat large quantity of receiving water. The NPS-WET is useful tool for assessing water-quality improvement efficiency using constructed wetland.

Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area (과수재배지 비점오염부하량 추정회귀식 비교 검증)

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Preparation and characterization of rutile phase TiO2 nanoparticles and their cytocompatibility with oral cancer cells

  • Vu, Phuong Dong;Nguyen, Thi Kieu Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.108-114
    • /
    • 2019
  • In the present study, rutile phase titanium dioxide nanoparticles ($R-TiO_2$ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at $900^{\circ}C$. The composition of $R-TiO_2$ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of $R-TiO_2$ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared $R-TiO_2$ NPs was 76 nm, the surface area was $19m^2/g$, zeta potential was -20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)-$H_2O$ solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that $R-TiO_2$ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of $R-TiO_2$ NPs for the aesthetic white pigmentation of teeth.

Comparison of Noise Power Spectrum in Measurements by Using International Electro-technical Commission Standard Devices in Indirect Digital Radiography (간접평판형 검출기에서 국제전자기술위원회 기준을 통한 잡음전력스펙트럼 비교 연구)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Kim, Ki-Won;Kwon, Kyung-Tae;Jung, Jae-Yong;Son, Jin-Hyun;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.457-462
    • /
    • 2018
  • The purpose of this study was to compare image quality of indirect digital radiography (IDR) system using the International Electro-technical Commission standard (IEC 62220-1), and to suggest the analysis of noise power spectrum (NPS) which were applied to IEC 62220-1 in medical imaging. In this study, Pixium 4600 (Trixell, France) which is indirect flat panel detector (FPD) was used. The size of image receptor (IR) is $7{\times}17$ inch (matrix $3001{\times}3001$) which performed 14bit processing and pixel pitch is $143{\mu}m$. In IEC standard, NPS evaluation were applied to RQA3, RQA5, RQA7 and RQA9. Because of different radiation quality, each region of interesting (ROI) were compared. The results of NPS indicated up to $3.5mm^{-1}$ including low Nyquist frequency. RQA5 indicated the lowest NPS and the others indicated higher NPS results relatively. NPS result of ROI a38 was higher than ROI a92 and this result indicated that there are more noise in left (cathode) than right (anode). This study were to evaluate NPS by using different radiation quality and setting the each ROI, and to suggest the quantitative methods of measuring NPS.

Effects of Soil-Plant Interactive System on Response to Exposure to ZnO Nanoparticles

  • Lee, Sooyeon;Kim, Saeyeon;Kim, Sunghyun;Lee, Insook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1264-1270
    • /
    • 2012
  • The ecotoxicological effects of nanomaterials on animal, plant, and soil microorganisms have been widely investigated; however, the nanotoxic effects of plant-soil interactive systems are still largely unknown. In the present study, the effects of ZnO nanoparticles (NPs) on the soil-plant interactive system were estimated. The growth of plant seedlings in the presence of different concentrations of ZnO NPs within microcosm soil (M) and natural soil (NS) was compared. Changes in dehydrogenase activity (DHA) and soil bacterial community diversity were estimated based on the microcosm with plants (M+P) and microcosm without plants (M-P) in different concentrations of ZnO NPs treatment. The shoot growth of M+P and NS+P was significantly inhibited by 24% and 31.5% relative to the control at a ZnO NPs concentration of 1,000 mg/kg. The DHA levels decreased following increased ZnO NPs concentration. Specifically, these levels were significantly reduced from 100 mg/kg in M-P and only 1,000 mg/kg in M+P. Different clustering groups of M+P and M-P were observed in the principal component analysis (PCA). Therefore, the M-P's soil bacterial population may have more toxic effects at a high dose of ZnO NPs than M+P's. The plant and activation of soil bacteria in the M+P may have a less toxic interactive effect on each of the soil bacterial populations and plant growth by the ZnO NPs attachment or absorption of plant roots surface. The soil-plant interactive system might help decrease the toxic effects of ZnO NPs on the rhizobacteria population.

Toxic Effects of Alumina Nanoparticles in Rat Cerebrums and Kidneys (산화알루미늄 나노물질이 랫드의 대뇌와 신장에 미치는 영향)

  • Jo, Eunhye;Seo, Gyun-Baek;Kim, Hyunmi;Choi, Kyunghee;Kwon, Jung-Taek;Kim, Philje;Eom, Igchun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • Objectives: Alumina nanoparticles ($Al_2O_3$, Al-NPs) are used for various purposes, including as coating agents and paint additives. Their potential toxicity has raised concern for human health. This study focuses on exploring the toxic effects on the brain and kidneys caused by Al-NPs exposure in rats. Methods: The animals were orally administered Al-NPs at 10, 50 and 100 mg/kg body weight for 28 days following OECD TG 407. To determine the targeted toxicity of Al-NPs, histopathological examination and gene expression analysis were conducted on the rats. Results: The Al-NPs treatment induced kidney tubular dilatation. In the rat cerebrums, the expression levels of 126 genes experienced two-fold or greater increases in response to Al-NPs, including other genes encoding proteins involved in cell differentiation, transcription and signal transduction. In the rat kidneys, the expression levels of 152 genes also showed two-fold or greater increases in response to Al-NPs, including other genes encoding proteins involved in apoptosis, transcription and signal transduction. Conclusion: These results suggest that exposure to Al-NPs influences cellular signal pathways of kidney and cerebrum, and it can be a toxic indicators of nanometrials.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.