• 제목/요약/키워드: NPP release

검색결과 24건 처리시간 0.021초

Derivation of site-specific derived concentration guideline levels at Korea Research Reactor-1&2 sites

  • Kim, Geun-Ho;Do, Tae Gwan;Kwon, Jae;Ryu, Gangwoo;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.493-500
    • /
    • 2022
  • The objective of this study was to derive derived concentration guideline levels (DCGLs) reflecting the site-specific characteristics of KRR-1&2. A total of 7 nuclides (H-3, C-14, Co-60, Sr-90, Cs-137, Eu-152, and Eu-154) were selected for DCGLs derivation. Radiation dose at the sites was evaluated with RESRAD-ONSITE program. The dose contribution due to direct external exposure was the highest during the entire evaluation period. Ingestion had the second effect. The DCGLs of Co-60 was derived to be 0.051 Bq/g, and DCGLs of Cs-137 was 0.193 Bq/g. The DCGLs of H-3 showed the highest value of 129 Bq/g. The ratio of DCGLs derived by applying site-specific values and default values ranged from 0.27 to 19.6. For six nuclides excluding H-3, KRR-1&2 sites and the overseas NPP sites showed similar DCGLs. H-3 showed large differences in DCGLs from this study and overseas NPPs. The large difference resulted from input parameter values applied to the sites. In conclusion, it is critical to apply site-specific parameter values reflecting the site characteristics to derive DCGLs for decommissioned site clearance. The result of this study can be used as a reference for nuclide selection and DCGLs derivation reflecting the site characteristics when decommissioning nuclear facilities, including nuclear power plants in Korea.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가 (Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks)

  • 곽민우;이신동;김광표
    • 방사선산업학회지
    • /
    • 제18권2호
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가 (Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's)

  • 강덕원;양양희;박경록
    • 방사성폐기물학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문은 국내에서 가동되고 있는 3개 로형의 원자로 냉각재로부터 유기 및 무기 $^{14}C$의 특성을 평가하는데 초점을 맞추었다. 주목적은 국내 원전 부지에서 환경으로 방출되는 $^{14}C$에 대한 신뢰할 만 한 특성을 평가하는데 있다. $^{14}C$는 방사성핵종 인벤토리 중 가장 중요한 핵종중의 하나로서 처분장에서의 방출 시나리오에서 가장 중요한 선량 기여 핵종중의 하나이다. $^{14}C$는 반감기가 5,730 년인 순수 베타방출체로써 환경으로의 이동성이 높을 뿐 아니라 생물학적인 유용성이 높다. 최근의 연구결과에 의하면, 유기화합물 형태의 $^{14}C$는 환원환경 하에서 원자로 냉각재내에서 주종을 이루고 있는 것으로 밝혀졌으며 그 외의 유기화합물인 formaldehyde, formic acid 및 acetate도 함께 형성되는 것으로 알려졌다. 그러나 정지화학 처 리 기간인 산성 산화환경 하에서는 산화성 탄소형태로 바뀌면서 $^{14}CO_2$$H^{14}CO_3^-$형으로 바뀌어 지는 것으로 나타났다. 본 연구에서는 원자력발전소의 다양한 처리계통의 시료에 대해 유기 및 무기화학형의 $^{14}C$ 농도를 측정, 평가하였다 원자로 계통 내에서의 $^{14}C$ 인벤토리는 약 3.1 GBq/kg로 나타났으며 냉각재 계통 내에서는 주로 유기화학형 이 주종을 이루고 있었으며 무기화학형은 10% 이내인 것으로 나타났다 용액중의 $^{14}C$ 측정은 기상과 액상으로 분리하여 분석하였다. 정상 운전 중에는 유기화학형의 $^{14}C$가 주종을 이루고 있지만 발전소의 배기구를 통해 방출되는 $^{14}C$의 화학형은 온도, pH, 체적제어탱크의 방출 및 정지화학 처리에 따라 화학형이 달라지고 있는 것으로 나타났다.

  • PDF