• Title/Summary/Keyword: NOx reduction catalyst

Search Result 179, Processing Time 0.024 seconds

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

Comparison of NOx Reduction Characteristics of NOx Storage Catalyst and TWC for Lean-burn Natural Gas Vehicles (희박 천연가스 자동차용 NOx 흡장촉매와 TWC의 NOx 반응특성 비교)

  • 최병철;정우남;이춘희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.79-84
    • /
    • 2004
  • We evaluated the reduction performance of NOx storage catalyst and TWC for lean-burn natural gas engine by the model gas. The method of unsteady state reaction was used to compare with reduction performances of NOx storage catalyst and TWC. It was found that the effective parameter was rich spike duration, temperature of the model gas. In the presence of $CO_2$ and $H_2O$ in the reaction mixture was decreased the NOx reduction performance.

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

Low Temperature Selective Catalytic Reduction of NOx over V2O5/TiO2 Catalyst Doped with Mn (Mn이 첨가된 V2O5/TiO2 촉매상에서 질소산화물의 저온 SCR 특성)

  • Cheon, Tae Jin;Choe, Sang Gi;Choe, Seong U
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.537-542
    • /
    • 2004
  • $V_{2}O_{5}/TiO_{2}$ catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in $NH_3.$ The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and $O_2$ concentration. Among the various $V-{2}O_{5}$ catalysts having different metal loadings, $V-{2}O_{5}$(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of $200-250^{\circ}C.$ When the $V-{2}O_{5}$ catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of $100-200^{\circ}C.$ From Mn-$V_{2}O_{5}/TiO_{2}$, it was found that by addition of 5 wt.% Mn on $V_{2}O_{5}/TiO_{2}$ catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to $100^{\circ}C.$

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

The Studies on the Thermal Resistant Properties of $WO_3/TiO_2$ and $V_2O_5-WO_3/TiO_2$ Catalysts for NOx Reduction of Flue Gases from Industrial Boiler and on Catalyst Surface Acid Characteristics (産業用 보일러의 燃燒 排가스 中 NOx 處理를 위한 SCR 用 $WO_3/TiO_2$$V_2O_5/TiO_2$ 觸媒들의 耐熱特性과 表面 酸特性에 關한 硏究)

  • 이중범;임상윤;정석진;성준용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • In order to suggest an efficient catalyst systems for NOx reduction of flue gases from industrial boilers, $TiO_2$ supported $WO_3-V_2O_5, V_2O_5$ and $WS_2$ catalysts were tested for the performances of NOx reduction at high reactin temperature range (250-500$^\circ$C) using a simulated flue gas system. It was found that while the proposed $WO_3/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts showed a significant high NOx reduction efficiency at about 350-400$^\circ$C, the conventional commercial catalyst of $V_2O_5/TiO_2$ showed a significant drop in NOx reduction efficiency due to the excessive $NH_3$ oxidation. From the measurement of surface acidities of those catalysts, it was found that the acidity are well correlated with the activities of NOx reduction. The reason of high activity of $WO_3$ series catalysts at high reaction temperature seems due to the low value of surface excess oxygen compared with that of $V_2O_5/TiO_2$ seems equivalent to the acid site of that catalyst.

  • PDF

Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst (공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향)

  • Lee, Choon-Hee;Choi, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.

Aging Characteristics of NOx Storage and Reduction Catalyst for Lean-bum Natural Gas Vehicles (린번 천연가스자동차용 NOx 흡장촉매의 열화특성)

  • Choi, Byung-Chul;Lee, Choon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.147-152
    • /
    • 2007
  • This study investigates the aging characteristics of NOx storage and reduction(NSR) catalyst on the emission conditions of lean burn natural gas vehicles. We designed various NSR catalysts using by the double-layer washcoat technology to increase of a surface area and a thermal durability performance of the catalysts. The experiments were conducted with 3 kinds of the NSR catalysts, which were manufactured using by a honeycomb cordierite substrate. It was found that Ba is weak in the thermal aging because it has lower melting temperature than that of precious metals (PMs). The suitable loading amount of Ba in this study should be about 42 g/L from the results of the NOx adsorption and the NOx reduction efficiency. The major reason in deactivation of the NSR catalyst is the decrease of the adsorption site owing to the agglomeration and sintering of Ba rather than PM aging by hydrothermal aging. It was confirmed by results of BET, SEM and TEM.

Effect of $NH_3$/NOx ratio and Catalyst Temperature on DeNOx Performance in the $NH_3$-SCR reactor ($NH_3$-SCR 반응기 내에서의 $NH_3$/NOx 및 SCR 촉매 온도가 DeNOx 성능에 미치는 영향)

  • Hong, Kil-Hwa;Gong, Ho-Jeong;Hwang, In-Goo;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3096-3101
    • /
    • 2008
  • Selective Catalytic Reduction (SCR) technology is well-known to be effective for the reduction of NOx emission. So car manufacturers has adopted Ures-SCR system to be satisfied with emission regulation. This paper discusses the effective of $NH_3/NOx$ ratio and SCR catalyst temperature in the $NH_3$-SCR reactor on DeNOx performance. So it is shown the characteristic of NOx conversion and ammonia slip using the $NH_3$ instead of Urea-Solution. From the result of this study, it is found to optimize $NH_3/NOx$ ratio to have the best case of high NOx conversion and low ammonia slip at variable SCR catalyst temperatures. Lastly, it is also found the characteristics of NOx conversion and ammonia slip with compared with Urea.

  • PDF