• Title/Summary/Keyword: NOx formation characteristics

Search Result 122, Processing Time 0.03 seconds

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

An Investigation of the Heat Loss Model for Predicting NO Concentration in the Downstream Region of Laminar CH4/Air Premixed Flames (층류 CH4/Air 예혼합화염의 하류영역에서 NO 농도 예측을 위한 열손실 모델의 검토)

  • Hwang, Cheol-Hong;Lee, Chang-Eon;Kum, Sung-Min;Lee, Kee-Man;Shin, Myung-Chul;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.486-494
    • /
    • 2009
  • One-dimensional modeling of $CH_4$/air premixed flame was conducted to validate the heat loss model and investigate NOx formation characteristics in the postflame region. The predicted temperature and NO concentration were compared to experimental data and previous heat loss model results using a constant gradient of temperature (100 K/cm). The following conclusions were drawn. In the heat loss model using steady-state heat transfer equation, the numerical results using the effective heat loss coefficient ($h_{eff}$) of $1.0\;W/m^2K$ were in very good agreement with the experiments in terms of temperature and NO concentration. On the other hand, the calculated values using the constant gradient of temperature (100 K/cm) were lower than that in the experiments. Although the effects of heat loss suppress NO production near the flame region, a significant difference in NO concentration was not found compared to that under adiabatic conditions. In the postflame region, however, there were considerable differences in NO emission index as well as the contribution of NO formation mechanisms. In particular, in the range of ${\phi}\;{\geq}\;0.8$, the prompt NO mechanism plays an important role in the NO reduction under the adiabatic condition. On the other hand, the mechanism contributes to the NO production under the heat loss conditions.

A Study on Flow and Combustion Characteristics of Flat Flame Burner (Flat Flame Burner의 유동과 연소 특성에 관한 연구)

  • Jeong, Y.K.;Kim, C.K.;Jeon, C.H.;Chang, Y.J
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.59-66
    • /
    • 2000
  • In this study, We studied flow and combustion characteristics of a Flat Flame Burner(FFB) with swirler. As swirl number increase, the streamlines is proceed close to tile and velocity is large. Blow-off limit decrease when swirl number is 1.24, but blow-off limit increase when combustion load is 6500kcal/hr. Temperature distribution is uniform in front of tile and NO formation is small at S=1.24. We expect that the radiation can be transmitted to the object and NOx will reduce because of recirculation zone

  • PDF

The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation (배기가스 재순환을 적용한 희박-과농 연소시스템의 공해물질 배출특성 연구)

  • Oh, Wheesung;Lee, Chang-Eon;Yu, Byeonghun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the CH4/air lean-rich combustion system with exhaust gas recirculation (EGR) was investigated to explore the potential for lowering pollutant emissions. To achieve this purpose, experiments of lean-rich combustion system with EGR were conducted to measure the changes in the characteristics of the pollutant emission and flame shape with various equivalence ratios and EGR rates. Here, this study was applied to the fuel distribution ratio of 3:1 for the formation of the lean and rich flames. Additionally, the results were compared with $CH_4$/air lean premixed combustion system. The results show that flame shape of lean-rich combustion system was determined by lean and rich equivalence ratios (${\Phi}_L$ and ${\Phi}_R$) and stratified flame was formed with increasing ${\Phi}_R$. According to the pollutant emission characteristics based on experimental results, the NOx and CO emission index (EINOx and EICO) decreased with increasing EGR rate. Especially, in the range needed to form a stable flame, the reduction rates of EINOx and EICO were approximately 47% and 48% for an EGR rate of 25%, global equivalence ratio of 0.85 and ${\Phi}_L$ of 0.80 compared with lean premixed combustion system (${\Phi}$ = 0.78).

Effect of Injection Pressure and Injection Timing on Spray and Flame Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 분무 및 화염특성)

  • Oh, Heechang;Lee, Minsuk;Park, Jungseo;Bae, hoongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.221-228
    • /
    • 2013
  • An experimental study was carried out to investigate the effects of the injection timing on the spray and combustion characteristics in a spray-guided direct-injection spark-ignition (DISI) engine under lean stratified operation. An in-cylinder pressure analysis, exhaust emissions measurement, and visualization of the spray and combustion were employed in this study. The combustion in a stratified DISI engine was found to have both lean premixed and diffusion controlled flame combustion characteristics. The injection timing condition corresponding to the stratified mixture characteristics was verified to be a dominant factor for these flame characteristics. For the early injection timing, a non-luminous blue flame and low combustion efficiency were observed as a result of the lean homogeneous mixture formation. On the other hand, a luminous sooting flame was shown at the late injection timing because of an under-mixed mixture formation. In addition, the smoke emission and incomplete combustion products were increased at the late injection timing as a result of the increased locally rich area. On the other hand, the NOx emissions decreased and IMEP increased as the injection timing retarded. The combustion phasing produced by the injection timing was verified as the reason for this observation.

Thermal Deactivation of Plate-type V2O5-WO3/TiO2 SCR Catalyst (Plate-type V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성)

  • Cha, Jin-Sun;Park, Jin-Woo;Jeong, Bora;Kim, Hong-Dae;Park, Sam-Sik;Shin, Min-Chul
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.576-580
    • /
    • 2017
  • In the present paper, the thermal deactivation characteristics of plate-type commercial $V_2O_5-WO_3/TiO_2$ SCR catalyst were investigated. For this purpose, the plate-type catalyst was calcined at different temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ for 3 hours. Structural and morphological changes were characterized byXRD, specific surface area, porosity, SEM-EDS and also NOx conversion with ammonia according to the calcine temperature. The NOx conversion decreased with increasing calcine temperature, especially when the catalysts were calcined at temperatures above $700^{\circ}C$. This is because the crystal phase of $TiO_2$ changed from anatase to rutile, and the $TiO_2$ grain growth and $CaWO_4$ crystal phase were formed, which reduced the specific surface area and pore volume. In addition, $V_2O_5$, which is a catalytically active material, was sublimated or vaporized over $700^{\circ}C$, and a metal mesh used as a support of the catalyst occurred intergranular corrosion and oxidation due to the formation of Cr carbide.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency (연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.

Development of a Rapid Compression Expansion Machine and Compression Ignition Combustion of Homogeneous Premixtures (급속압축팽창기의 제작과 완전 예혼합기의 압축착화 연소실험)

  • 조상현;김기수;임병택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2004
  • A flywheel-driven rapid compression and expansion machine is developed and utilized for experimental study of homogeneous charge compression ignition combustion. Compression ignition of homogeneous charge in IC engines offers possibilities of realizing ultra-lean engine operation with greatly reduced NOx and particulate formation. Fundamental investigations are carried out in order to better understand this ideal engine combustion mechanism. Perfectly premixed propane-air mixtures of various equivalence ratio are compression-ignited in the rapid compression and expansion machine, and the characteristics of the auto-ignition and the following combustion process are analyzed.