• 제목/요약/키워드: NOx conversion

검색결과 179건 처리시간 0.018초

디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II) (Characterization of SCR System for NOx Reduction of Diesel Engine (II))

  • 이준성;김남용
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

탄화수소 환원제 공급에 따른 플라즈마-DeNOx 촉매의 성능에 관한 실험적 연구 (An Experimental Study on dte Performance of Plasma-DeNOx Catalyst widt Supplying Hydrocarbon Reductant)

  • 허동한;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.93-99
    • /
    • 2008
  • To improve the performance of plasma-DeNOx catalyst, a research on active system was performed experimentally. Two hydrocarbons, propane and diesel, were used as a reductant in this study. First, using propane, basic performances of plasma-DeNOx catalyst such as the effects of plasma and C/N ratio were measured at the various engine operating conditions. NOx conversion of catalyst was improved as plasma power or C/N ratio was increased. Next, diesel was injected in the exhaust gas flow as a reductant. The first test using diesel as a reductant is spray visualization in a high temperature flow and spray images were utilized for analysis of posterior test results. To evaluate the effect of an injection direction, it was compared with 6 installation methods of diesel injector due to THC concentrations at the inlet of plasma. From the results, injector was installed toward downstream direction below the pipe. Then, basic performances of plasma-DeNOx catalyst with various injection quantities were measured. As an injection quantity was increased, $NO_2$ conversion of plasma reactor was increased but NOx conversion of catalyst was nearly zero. This was because NOx conversion of catalyst had slowed as time goes by due to black particles which had been adhered to the catalyst.

STATIC CHARACTERISTICS OF A UREA-SCR SYSTEM FOR NOx REDUCTION IN DIESEL ENGINES

  • Nam, J.G.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents the static characteristics of a urea-SCR system. The static characterization of the urea-SCR system was generated by sweeping urea flow rates at common engine torque/speed operating points. Several experiments were performed using engine operating points at different raw NOx emission levels, space velocities, and SCR catalyst temperatures. The recorded NOx emissions from the engine exhaust outlet and engine tailpipe are then compared. The urea-SCR static system results indicated that a $50{\sim}60%$ NOx conversion is achievable at most engine operating points using the stoichiometric $NH_3/NOx$ ratio, and a high 98% NOx conversion is possible by exceeding the stoichiometric $NH_3/NOx$ ratio. The effect of the pre-oxidation catalyst volume was also investigated and found to have a profound impact on experimental results, particularly the static NOx conversion.

승용디젤엔진의 운전 조건 및 분사 조건 변경에 따른 Urea-SCR 시스템의 NOx 전환효율에 관한 연구 (Investigation on the DeNOx Efficiency in Urea-SCR System at Various Operating Conditions and Injection Characteristics for a Passenger Diesel Engine)

  • 홍길화;황인구;명차리;박심수
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.952-960
    • /
    • 2009
  • Selective Catalytic Reduction (SCR) system is a high-effective NOx reduction technology in diesel engines. As the emission standard of diesel engines is more stringent, vehicle manufactures makes efforts on emission technologies. This paper discusses the performance of Urea-SCR system according to the engine operating conditions in a passenger diesel engine. Engine test results in this paper show that it is important to consider the catalyst temperature and space velocity to obtain high NOx conversion efficiency. In condition of high catalyst temperature, over 90% NOx conversion efficiency is indicated. However, when catalyst temperature is low, NOx conversion efficiency was decreased. Also, it was shown that space velocity mainly effects on the DeNOx performance under 220 degree celsius of SCR catalyst temperature. As the urea injection pressure was decreased, NOx conversion efficiency was declined. It is concerned about urea droplet atomization. This work shown in this paper can lead to improved overall NOx conversion efficiency.

$NH_3$-SCR 반응기 내에서의 $NH_3$/NOx 및 SCR 촉매 온도가 DeNOx 성능에 미치는 영향 (Effect of $NH_3$/NOx ratio and Catalyst Temperature on DeNOx Performance in the $NH_3$-SCR reactor)

  • 홍길화;공호정;황인구;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3096-3101
    • /
    • 2008
  • Selective Catalytic Reduction (SCR) technology is well-known to be effective for the reduction of NOx emission. So car manufacturers has adopted Ures-SCR system to be satisfied with emission regulation. This paper discusses the effective of $NH_3/NOx$ ratio and SCR catalyst temperature in the $NH_3$-SCR reactor on DeNOx performance. So it is shown the characteristic of NOx conversion and ammonia slip using the $NH_3$ instead of Urea-Solution. From the result of this study, it is found to optimize $NH_3/NOx$ ratio to have the best case of high NOx conversion and low ammonia slip at variable SCR catalyst temperatures. Lastly, it is also found the characteristics of NOx conversion and ammonia slip with compared with Urea.

  • PDF

디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구 (A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst)

  • 김양화;임옥택;김홍석
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

희박연소 상태에서 프로필렌 환원제에 의한 Pt-TiO2 이원기능 촉매의 NOx 제거 특성 (Lean Burn de-NOx Properties of Pt-TiO2 Bifunctioncal Catalyst by Propylene)

  • 정태섭;채수천
    • 대한환경공학회지
    • /
    • 제22권3호
    • /
    • pp.511-521
    • /
    • 2000
  • 디젤자동차와 같이 희박연소 상태에서 많이 배출되는 질소산화물을 선택적 촉매환원(SCR)으로 제거하기 위하여 제올라이트와 금속산화물을 조합한 촉매를 석영 반응로에서 설험하였다. 환원제는 자동차 배출가스에 포함되어 있어 실용 가능성이 크다고 판단되는 탄화수소 중 안전성 및 환원효율이 좋은 올레핀계 탄화수소인 프로필렌을 사용하였다. 본 연구에서는 제올라이트 및 금속산화물계의 단일촉매 상태에서의 NOx 전환율을 파악하고, 저옹 및 고온에서 활성이 다른 촉매를 기계적으로 조합하여 NOx 전환 활성 온도창(Temperature Window)을 확대하고 내구성이 좋은 촉매를 찾고자 하였다 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 촉매와 0.28wt%Pt-$TiO_2$/$Al_2O_3$ 촉매 및 1.1 wt%Pt-$TiO_2$/$Mn_2O_3$ 촉매 모두 $400^{\circ}C$를 변곡점으로 저온과 고온에서 NOx 제거활성이 있었는데, 저온에서 활성이 가장 큰 것은 0.28wt%Pt-$TiO_2$/$Al_2O_3$ 촉매이었고, 고온에서는 1.1wt%Pt-$TiO_2$/$Mn_2O_3$(21) 촉매가 제일 높은 활성을 보였다. 그러나 수분 및 아황산가스 공존시와 열적 내구성 면에서는 0.55wt%Pt-$TiO_2$/5wt% Cu-ZSM-5 촉매가 가장 우수하게 나타났다.

  • PDF

REDUCTION CHARACTERISTICS OF NOx STORAGE CATALYST FOR LEAN-BURN NATURAL GAS VEHICLES

  • Lee, C.H.;Choi, B.C.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.667-674
    • /
    • 2007
  • Various types of NOx storage catalysts for NGV's were designed, manufactured, and tested in this work on a model gas test bench. As in most of other studies on NOx storage catalyst, alkaline earth metal barium(Ba) was used as the NOx adsorbing substance. The barium-based experimental catalysts were designed to contain different amounts of Ba and precious metals at various ratios. Reaction tests were performed to investigate the NOx storage capacity and the NOx conversion efficiency of the experimental catalysts. From the results, it was found that when Ba loading of a catalyst was increased, the quantity of NOx stored in the catalyst increased in the high temperature range over 350. With more Ba deposition, the NOx conversion efficiency as well as its peak value increased in the high temperature range, but decreased in the low temperature range. The best of de-NOx catalyst tested in this study was catalyst B, which was loaded with 42.8 g/L of Ba in addition to Pt, Pd and Rh in the ratio of 7:7:1. In the low temperature range under $450^{\circ}C$, the NOx conversion efficiencies of the catalysts were lower when $CH_4$, instead of either $C_3H_6$ or $C_3H_8$, was used as the reductant.

파일럿규모의 선택적촉매환원장치에서 디젤유를 이용한 질소산화물 제거 (Reduction of Nitrogen Oxides with Diesel Oil In Pilot Scale SCR(Selective Catalytic Reduction) Process)

  • 이인영;류경옥
    • 대한환경공학회지
    • /
    • 제22권11호
    • /
    • pp.1977-1983
    • /
    • 2000
  • 천연가스를 사용하는 복합화력발전소에서 발생되는 질소산화물(NOx)에 대한 귀금속촉매(Pt/Zeolite)의 활성을 디젤유를 환원제로 사용하여 파일럿 규모의 선택적촉매환원장치(selective catalytic reduction)에서 환원제 주입량, 반응온도, 공간속도에 따라 고찰하였다. 시험결과, 디젤유의 주입량을 증가시킬수록 NOx의 전환율은 증가하였으며 C/N비(C/N비: 배기가스 중에 포함된 NOx의 분자수에 대한 환원제 탄소 원자수의 비) 5.5 이상에서는 일정한 전환율을 유지하였다. NOx 전환율에 대한 반응온도의 영향을 알아본 결과, 온도가 증가함에 따라 NOx의 전환율이 증가하여 $190^{\circ}C$의 온도에서 최고 50%의 전환율을 보였다. 7,200/hr~27,000/hr의 범위에서 NOx 전환율에 대한 공간속도의 영향은, 18,500/hr까지 일정한 전환율을 유지하였으며 그 이상에서는 감소하였다. 이상의 결과에서 디젤유를 환원제로 사용하는 질소산화물 제거를 위한 SCR 공정의 적용 가능성을 확인할 수 있었다.

  • PDF

알칼리 이온 교환 Y-제올라이트의 NOx 전환에 대한 촉매 특성 및 반응성 (Characterization and the Catalytic Properties of Alkali- Exchanged Y-Zeolites on NOx Conversion)

  • 이창섭;이경희
    • 한국가스학회지
    • /
    • 제9권2호
    • /
    • pp.50-55
    • /
    • 2005
  • 본 논문에서는 알칼리 금속 이온 교환된 Y-제올라이트를 합성하여 그 성분과 구조를 여러 가지 분석법을 이용하여 확인하였으며, NOx전환 반응에 대하여 비열 플라즈마 기술과 결합한 이들의 촉매 능력에 대한 시험을 하였다. 합성된 LiY NaY KY, CsY의 NOx환원에 대한 반응성을 $100^{\circ}C$에서 $350^{\circ}C$의 온도 범위에서 NOx미터로 측정하였다. $150^{\circ}C$에서 촉매의 초기 반응성은 LiY < KY < NaY < CsY의 순으로 증가하였다. CsY와 NaY의 반응성은 온도에 따라 증가하다가 $200^{\circ}C$에서 최대에 도달하였고 그 이상의 온도에서는 오히려 감소하였다. KY의 반응성은 $200^{\circ}C$까지는 같은 수준을 유지하다가 그 이상의 온도에서는 감소한 반면 LiY의 반응성은 온도가 올라감에 따라 계속 감소하였다. 알칼리 금속 계열 중에서 반응성이 가장 좋은 CsY촉매는 $170{\~}220^{\circ}C$의 온도범위에서 $80\%$의 NOx 전환율을 나타내었다.

  • PDF