• Title/Summary/Keyword: NOx Reduction Methods

Search Result 46, Processing Time 0.017 seconds

A Study on the Improvement in Productivity and Safetiness for Calcination Process of Automotive Catalyst by Using Design of Experiment (실험계획을 통한 자동차 촉매 소성 공정의 생산성 향상과 안정성 증대 연구)

  • Jung, Chule-kyou;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • The diesel engine generate many pollutants such as PM(Particulate matter) and NOx(Nitrogen oxide). So the SCR(Selective catalytic reduction) must be required to meet the emission standard. The SCR catalyst market is growing rapidly, and the automobile markets using alternative energy sources are growing rapidly. This study deals with optimization of the calcination process the manufacturing process of SCR catalyst to be competitive. The calcination process is a bottleneck and it is required to optimize productivity and accept to be safety, But we cannot trade off anything in terms of safety. We applied DOE(Design of experiments) among many research methods performed in various fields. In order to achieve quality and productivity optimization. The dependent variables in the DOE were selected as NO Conversion(%). The independent variables were selected as the calcination temperature, soaking time and fan speed RPM. the CCD(Central composite designs) constructs response surface using the data onto experience and finds optimum levels within the fitted response surfaces. Our tests are our stability guarantee and efficient together with operation.

Synthesis of WO3/TiO2 catalysts from different tungsten precursors and their catalytic performances in the SCR (텅스텐(W) 원료에 따른 WO3/TiO2 SCR 촉매의 제조 및 촉매능)

  • Lee, Byeong Woo;Lee, Jin Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.213-218
    • /
    • 2014
  • An investigation of the influence of $WO_3$ addition with different precursors and preparation methods on the phase formation and selective catalytic reduction (SCR) efficiency of anatase-$TiO_2$ powders has been carried out. An anatase-$TiO_2$ synthesized by precipitation process was used as a catalyst support. For $WO_3(10wt%)/TiO_2$, the W loading to the $TiO_2$ support led to the lower in anatase to rutile transition temperature to ${\sim}900^{\circ}C$ from $1200^{\circ}C$ of the $TiO_2$ support alone. In the case of $WO_3(10wt%)/TiO_2$ SCR powders obtained from a wet process with ammonium meta-tungstate (AMT) precursor, the highest $NO_X$ conversion efficiency was achieved at $450^{\circ}C$ remaining high efficiency at $500^{\circ}C$, while the same composition prepared from a dry process with $WO_3$ addition showed the lowered efficiency with temperature after reaching the efficiency maximum at $350^{\circ}C$. The same tendency has been found that the $V_2O_5(5wt%)-WO_3(10wt%)/TiO_2$ SCR powders obtained from the wet process with AMT precursor has shown the superior $NO_X$ conversion efficiency over 90 % in a wider temperature range of $300{\sim}500^{\circ}C$.

A Study on the Uniform Mixing of Ammonia-Air with the Change of Ammonia Supply Device Shape in a De-NOx System (탈질설비에서 암모니아 혼합기의 형상에 따른 암모니아-공기 균일 혼합에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.20-26
    • /
    • 2019
  • Selective catalytic reduction(SCR) method is widely used among various methods for reducing nitrogen oxides in combustion devices of coal power plant. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal shape of ammonia-dilution air mixing device in a ammonia injection grid. The distribution characteristics of flow and $NH_3$ concentration had been elucidated for the reference shape of ammonia mixing device(Case 1). In the mixing device of Case 1, it could be seen that $NH_3$ distribution was shifted to the wall opposite to the inlet of the ammonia injection pipe. For the improvement of $NH_3$ distribution, the case(Case 2) with closing one upper injection hole and 4 side injection holes, the case(Case 3) with installing horizontal plate at the upper of ammonia injection pipe, the case(Case 4) with installing horizontal plate and horizontal arc plate at he upper of ammonia injection pipe were investigated by analyzing flow and $NH_3$ concentration distributions. From the present study, it was found that the % RMS of $NH_3$ for Case 4 was 4.92%, which was the smallest value among four cases, and the range of $R_{NH3}$ also has the optimally uniform distribution, -10.82~8.34%.

Performance Evaluation of Nitrogen Oxide Removal by Air Purification Blocks with Titanium Dioxide (이산화티타늄을 이용한 대기정화 블록의 질소산화물 제거 성능 평가)

  • Oh, Ri-On;Kim, Hwang-Hee;Park, Sung-Ki;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.39-46
    • /
    • 2020
  • This study evaluated the nitrogen oxide (NOx) removal efficiency by air purification concrete blocks with titanium dioxide (TiO2). The concrete in the mixtures had a 30% water:cement ratio, to which TiO2 was added at 0%, 5%, and 10% of cement weight. The compressive strength reduction rate and removal efficiency of NOx were investigated. The result of the compressive strength test in the study indicated that addition rate of TiO2 did not lead to signifcant effect. In terms of the average removal efficiency of NOx, mix No. 1 using a TiO2 mixing ratio of 0% had a removal efficiency of 0.57% on average; thus, the removal effect w as not significant. For the other samples prepared by mixing, the average removal efficiencies for mix No. 2 (5% TiO2) were 58.86% and 62.05% for normal and washing surface treatments, respectively, and those of sample No. 3 (10% TiO2) were 59.94% and 67.61%. mixs No. 4 (5%) and No. 5 (10%), in which TiO2 diluted with distilled water was sprayed onto the block surface, had an average NOx removal efficiency of 61.72% and 68.48%, respectively. In terms of NOx removal efficiency, Mixs No. 3 and No. 5 with 10% TiO2 were better than Mixs No. 2 and No. 4 with 5% TiO2. In addition, analyzing the NOx removal efficiency results from the fixing method, it was capable to apply mixing (washing) and the diluted spray methods. Therefore, it was found that the diluted spray method applied in this study can be employed in any manufacture of air purification concrete blocks.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.