• Title/Summary/Keyword: NOx Concentration

Search Result 450, Processing Time 0.026 seconds

Chemical Characteristics of Precipitation in Quercus Forests in Korea and Japan

  • Kim, Min Sik;Takenaka, Chisato;Park, Ho Taek;Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.503-509
    • /
    • 2007
  • The major objective of this study was to analyze the difference of the chemical characteristics of acid deposition in Quercus forests in Korea and Japan. The pH values of rainfall at the experimental forest of Kangwon National University (KS site) were higher than those at the Foresta Hills in Japan (JP site), and all chemical contents of throughfall and stemflow were much higher than those of rainfall in Quercus forest stands at the KS and JP site. The pH values, $Ca^{2+}$, $NO_3{^-}$ and $SO{_4}^{2-}$ concentration of throughfall and stemflow at the KS site showed seasonal variation. While at the JP site, the same pattern was shown in the pH values of throughfall and stemflow, however, did not show any difference among seasons. Also, the annual input of all nutrients in these two contrasting forests varied seasonally. These results can be used to predict the amounts of air pollutant that are washed off and leached by the rainfall and Yellow Sand (Asian dust), including NOx and SOx acid pollutants transported easterly from China in the spring. Therefore, it is necessary to quantify the inputs of dry and wet deposition throughout a full year to gain a more complete understanding of the effects of acid deposition on the nutrient cycles in these forest ecosystems.

An Experimental Study on the Combustion and Emission Characteristics of Blends of GTL / Biodiesel in Diesel Engine (GTL/바이오디젤 혼합 연료의 연소 및 배기배출물 특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.39-45
    • /
    • 2009
  • An experimental research with 2.0 liter 4-cylinder turbocharged diesel engine was carried out to investigate the combustion and emission characteristics for various alternative fuels. The conventional diesel fuel, neat GTL, blends of 80% of GTL and 20% of biodiesel derived from waste cooking oil are utilized without any modification of engine hardware and ECU data. For GTL and blends of GTL/biodiesel fuel, the ignition delay decreased at the same operating conditions, and overall combustion duration increased slightly. Also, the peak cylinder pressure increased for blends of GTL/biodiesel compared to diesel and GTL fuel. THC and CO emissions with blends of GTL/biodiesel compared to other fuels decreased for the low and middle load conditions. But NOx emission increased due to oxygen content in biodiesel. The number concentrations of PM are higher for blends of GTL/biodiesel than other test fuels in the nucleation mode, while it had an opposite tendency in the accumulation mode, which implies more reduction of PM for blends of GTL/biodiesel on the base of mass concentration.

Numerical study of a conical MILD combustor with varing the fuel flow rate (연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD combustion is a highly favored technology for solving the trade-off relation between high thermal efficiency and low pollutant emissions. The system has low NOx concentration in high temperature combustion by recirculating the combustion gas, as well as improving the thermal efficiency by making the internal temperature in a combustion furnace uniform. This study describes the combustion characteristics of a conical MILD combustor in a laboratory-scale furnace by adjusting the equivalence ratio with the fuel gas flow rate while maintaining a constant air flow rate of the furnace. The MILD regime in the furnace is well characterized and the in-furnace temperature and emissions were predicted, respectively, for the range of equivalence of 0.69 - 0.83. For the range of equivalence ratios, this study confirmed the existence of a stable flame region that has an approximately $300^{\circ}C$ temperature difference between the maximum flame temperature region and main reaction region.

Numerical Study on Flame Structure and NO Formation Characteristics in Oxidizer-Controlled Diffusion Flames (산화제 제어 확산화염의 화염구조 및 NO 생성 특성에 관한 수치해석적 연구)

  • Lee, Chang-Eon;Han, Ji-Ung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen -enhanced(CH$_4$/O$_2$-$N_2$) and oxygen-enhanced-EGR(CH$_4$/O$_2$-$CO_2$) counter diffusion flame with various strain rates. A small amount of $N_2$is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$contamination by $O_2$production process or air infiltration. The results are as follows : In CH$_4$/O$_2$-$CO_2$flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In CH$_4$/O$_2$-$N_2$flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case CH$_4$/O$_2$-$CO_2$flame contains more than 40% $CO_2$it is possible to maintain the same EINO as that of CH$_4$/Air flame with accomplishing higher temperature than that of CH$_4$/Air flame. EINO decreases with increasing strain rate, and those effects are augmented in CH$_4$/O$_2$flame.

Structure and NO formation characteristics of oxidizer-controlled diffusion flames (산화제 제어 화염의 구조 및 NO 생성 특성)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.185-190
    • /
    • 2001
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen-enhanced$(CH_4/O_2-N_2)$ and oxygen-enhanced-EGR$(CH_4/O_2-CO_2)$ counter diffusion flame with various strain rates. A small amount of $N_2$ is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$ contamination by $O_2$ production process or air infiltration. The results are as follows : In $CH_4/O_2-CO_2$ flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In $CH_4/O_2-N_2$ flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case $CH_4/O_2-CO_2$ flame contains more than 40% $CO_2$ it is possible to maintain the same EINO as that of $CH_4/Air$ flame with accomplishing higher temperature than that of $CH_4/Air$ flame. EINO decreases with increasing strain rate, and those effects are augmented in $CH_4/O_2$ flame. Complementary study is needed with extending the range of strain rate variation.

  • PDF

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

Interference and Re-Inflow of Contaminated Air in Successive Tunnel (연속터널에서의 오염물질 재유입 및 환기영향평가)

  • Kim, Young-Geun;Kim, Woo-Sung;Wye, Yong-Gon;Kim, Nam-Yung;Lee, Ho-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.115-134
    • /
    • 2003
  • Recently, there are many cases in the roadway design for successive tunnel with small distance between two tunnels. In this case, the degree of interference for successive tunnels is a significant consideration in the design of ventilation systems. Also, Re-inflows of contaminated air in successive tunnel make serious ventilation problems in case of fire accident in the tunnel. In this study, for successive tunnels in Donghae highway project, the concentration of contaminant such as CO, NOx and Smoke were calculated by numerical analysis using 1D and 3D-CFD analysis. And, the rate of re-inflow at the portals of successive tunnel according to the direction of wind were analysed.

  • PDF

Air Environmental Characteristics of a Greenway Park in Gwangju (푸른길 공원의 대기 환경 특성에 관한 연구)

  • Min, Kyoung-Woo;Lee, Kyoung-Soek;Park, Ok-Hyun;Yoon, Kwan-Ju;Kim, Do-Sool;Park, Se-Il;Jeung, Won-Sam;Lee, Dae-Hang;Cho, Young-Gwan
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.3
    • /
    • pp.171-181
    • /
    • 2015
  • Objectives: This study aimed to survey the characteristics of air quality and meteorological conditions in a greenway park. Methods: We measured meteorological and health related factors, including noise, particulate matter ($PM_{10}$) and selected gaseous air pollutants at three locations in a greenway park and on a general roadside as comparison. The measurements were repeated four times from April to October 2014. Results: The average air temperature in the greenway park was $20.7^{\circ}C$ which was $1-2^{\circ}C$ lower than on the general roadside. The average $PM_{10}$ concentration in the greenway park was $85.0{\mu}g/m^3$, a level 2-3 times lower than that at the roadside. The noise level at the greenway site was 4.4 dB(A)- 23.0 dB(A) lower than at the roadside. The average CO, $CO_2$, $SO_2$ and NOx concentrations in the greenway park were lower than at the roadside. The average phytoncide and anions concentrations in the greenway park were higher than at the roadside. Conclusions: The urban forest of the greenway park may have some impact on air quality and meteorological conditions.

Development of a Greenhouse Monitoring System Using Network (네트워크를 이용한 온실 감시 시스템의 개발)

  • 임정호;류관희;진제용
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • This study was carried out to design, construct, and test a greenhouse monitoring system fur the environment and status of control devices in a greenhouse from a remote site using internet. The measuring items selected out of many environmental factors were temperature, humidity, solar radiation, CO$_2$, SOx, NOx concentration, EC, pH of nutrient solution, the state of control devices, and the image of greenhouse. The developed greenhouse monitoring system was composed of the network system and the measuring module. The network system consists of the three kinds of monitors named the Croup Monitor. the Client Monitor and the Server Monitor. The results of the study are summarized as follows. 1. The measuring module named the House Monitor. which is used to watch the state of the control device and the environment of the greenhouse, was developed to a embedded monitoring module using one chip microprocessor 2. For all measuring items. the House Monitor showed a satisfactory accuracy within the range of ${\pm}$0.3%FS. The House Monitors were connected to the Croup Monitor by communication method of RS-485 type and could operate under power and communication fault condition within 10 hours. The Croup Monitor was developed to receive and display measurement data received from the House Monitors and to control the greenhouse environmental devices. 3. The images of the plants inside greenhouse were captured by PC camera and sent to the Group Monitor. The greenhouse manager was able to monitor the growth state of plants inside greenhouse without visiting individual greenhouses. 4. Remote monitoring the greenhouse environment and status of control devices was implemented in a client/server environment. The client monitor of the greenhouse manager at a remote site or other greenhouse manager was able to monitor the greenhouse environment and the state of control devices from the Server Monitor using internet.

Chemical Characteristics of Fine Aerosols During ABC-EAREX2005 (ABC-EAREX2005 미세 에어러솔의 화학적 특성)

  • Song, M.;Lee, M.;Moon, K.J.;Han, J.S.;Kim, K.R.;Lee, G.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.604-613
    • /
    • 2006
  • The chemical composition of $PM_{2.5}$ such as ${SO_4}^{2-},\;{NO_3}^-,\;Cl^-,\;{NH_4}^+,\;Ca^{2+},\;K^+,\;Na^+,\;Mg^{2+}$, OC, and EC and the concentrations of reactive trace gases including $O_3,\;CO,\;NOx,\;SO_2,\;and\;H_2O_2$ were measured at Gosan in Jeju Island during March $13{\sim}30$, as a part of the Atmospheric Brown Clouds-East Asian Regional Experiment 2005(ABC-EAREX2005). The average mass concentrations of $PM_{2.5}$ was 27.3 ${\mu}g/m^3$, of which OC showed the highest concentration as 4.22 ${\mu}g/m^3$ and nss ${SO_4}^{2-}$ was the second highest as 3.34 ${\mu}g/m^3$. During that period, average concentrations of CO and $O_3$ was about 300 ppbv and 56 ppbv, respectively. For the whole experiment, the correlations of CO with ${SO_4}^{2-}$ and EC were very good, which suggests that CO can be used as tracer for the formation of fine aerosols. Several pollution and dust episodes were identified by the enhancement of CO, OC, EC, nss ${SO_4}^{2-},\;or\;Ca^{2+}$ concentrations or their ratios. In conjunction with factor analysis, air trajectory analysis, and comparison with emission inventories, these results indicate the spring aerosols collected at Gosan was strongly influenced by Asian outflows.