• Title/Summary/Keyword: NOx 배출물

Search Result 200, Processing Time 0.038 seconds

Experimental Study on Thermal NOx and CO Emission in a Laboratory-Scale Incinerator with Reversed Secondary Air Jet Injection (역방향 2차 공기 주입 방식을 적용한 소각 연소로의 Thermal NOx 및 CO 배출특성에 대한 축소모형실험 연구)

  • Choi, Chonggun;Choi, Woosung;Shin, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.503-510
    • /
    • 2016
  • Incinerators generally emit pollutants such as NOx and CO during the combustion process. In this paper, pollutant emissions and temperature distributions were studied in a simulated incinerator with a reversed (relative to the flue gas flow) secondary air injection system. The experiments were performed by using a lab-scale furnace in order to evaluate the effects of the injection location, direction and flow rate of secondary air jets. The emission of NOx was lower in the case of reversed secondary air injection than in the case of cross injection, due to the recirculation and mixing of the exhaust gas. In the reversed air injection cases, thermal NOx emissions decreased as secondary air ratio increased from 30 to 60 and slightly increased at secondary air ratios higher than 60. In most cases, CO emissions were not detected except for a few reversed secondary air injection cases, in which cases CO concentrations below 2ppm were observed.

Combustion and Emission Characteristics of 4 Cylinder Common-Rail DI Diesel Engine with Biodiesel Blended Fuel (4 실린더 직접분사식 디젤엔진에서 바이오디젤 혼합연료의 연소 및 배기특성)

  • Lee, Dong-Gon;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • This paper describes the effects of biodiesel blended fuel on the engine combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this work, the biodiesel-diesel blended fuel(20% of biodiesel and 80% of ULSD(ultra low sulfur diesel) by volume ratio, BD20) and ULSD fuel are used under the various injection pressures and engine speeds. The experimental results of BD20 and ULSD fuel show that NOx emissions were increased and soot emissions were decreased with the increase of injection pressure. In particular, NOx emissions were slightly increased for the BD20 fuel, however, soot emissions were significantly reduced compared to the ULSD fuel. When the engine speed is increased from 1000rpm to 2000rpm, NOx emissions are decreased at all tested conditions, and soot emissions are largely increased at lower injection pressure.

Effect of Recirculated Exhaust Gas on Exhaust Emissions of Boiler with FGR System (FGR 시스템 보일러의 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Kim, Jung-Min;Kim, Yi-Suk;Cho, Yong-Soo;Choi, Seung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.390-395
    • /
    • 2003
  • The effect of recirculated exhaust gas on exhaust emissions under four kinds of nozzle tip with the different fuel consumption rate are experimentally investigated by using an once-through boiler with FGR system. The purpose of this study is to develop the FGR control system for reducing NOx in a boiler. Intake and exhaust oxygen concentrations, and equivalence ratio are applied to discuss the effect of FGR rate on exhaust emissions at various fuel consumption rates. It is found that NOx emissions are decreased, while soot emissions are increased owing to the drop of intake and exhaust oxygen concentrations, and the rise of equivalence ratio as FGR rates are elevated.

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF

Numerical Study of the Optimization of Combustion and Emission Characteristics of Air-Staged Combustion in a Pulverized Coal-Fired Boiler (석탄 화력 보일러의 공기 다단공급방식을 통한 연소 및 배기 배출물 특성 최적화에 관한 수치해석 연구)

  • Yoon, Min-Ji;Lee, Byoung-Hwa;Song, Ju-Hun;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.587-597
    • /
    • 2010
  • Air-staged combustion is known to be one of the techniques of NOx reduction. The objective of this study is to determine the optimal ratio of air flow distributed for CCOFA and SOFA; at this optimal ratio, the combustion and exhaust emission characteristics of a pulverized coal-fired boiler are maintained at a satisfactory level. A numerical investigation was performed at various airflow ratios of 16.7/83.3%, 25/75%, 50/50%, 75/25%, and 83.3/16.7%. An inert gas was considered as a substitute for air to isolate the effects of the cooling process and chemical reaction on NOx reduction; during NOx reduction in air-staged combustion, both the effects typically occur simultaneously. The results of our study show that the optimum condition, under which the maximum NOx reduction and highest boiler efficiency can be obtained, corresponds to the equal splitting of the over-fire air between CCOFA and SOFA.

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.

Study on the reduction of $CO_2$ and NOx emission by coastal transport of import-export container cargo (수출입컨테이너화물의 연안운송에 의한 이산화탄소($CO_2$)와 질소산화물(NOx) 배출량 삭감에 관한 연구)

  • Kim S. H.;Coh C. D.;Cho Y. J.;Van S. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the reduction of CO₂ gas emission and exhaust gas emission by using the shift of coastal transport from land transport for import-export container cargo was proposed. At first, the domestic CO₂ gas emission, exhaust gas emission and the transportation of import-export container cargo are investigated. And also, we investigated the reduction of CO₂ gas emission and exhaust gas emission by the shift of coastal transport from land transport for the transportation of import-export container cargo between Kyongin area and Pusan Port. Finally, the change of NOx gas emission due to the change of the share of coastal transportation and using the 320TEU container ship are investigated. The research results show that the shift of coastal transport from land transport was effective to reduce the CO₂ gas emission and exhaust gas emission.

  • PDF

Experimental Study on Reduction of Emissions for Marine Diesel Engines with a Double Post Injection (선박용 디젤엔진에서 이단지연분사에 따른 배기 배출물 저감에 관한 실험 연구)

  • Lee, Won-Ju;Choi, Jae-Hyuk;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.418-424
    • /
    • 2015
  • Marine Environment Protection Committee of the International Maritime Organization has decided to reinforce the NOx emission standards for ships passing an ECA(Emission Control Area) with Tier III standards from January 1, 2016. In this study, real-time measurements of the exhaust gas, cylinder pressure and fuel consumption were conducted at each load of a T/S Hanbada main engine of Korea Maritime and Ocean University, which is controlled by single injection and double post injection for reducing NOx emissions. The results showed that the quantity of CO2 and NOx increased in proportion to the engine load, whereas the CO concentration was inversely proportional to the engine load. In addition, double post injection decreased 10 % of P-max and reduced 25~30 % of the NOx emissions compared to single injection, whereas there was a trade-off relation, such as increase 3~5 % of SFOC (Specific Fuel Oil Consumption).