• Title/Summary/Keyword: NORMAL WALKING

Search Result 375, Processing Time 0.025 seconds

Abnormal Step Recognition for Pedestrian Danger Recognition (보행자의 위험인지를 위한 비정상 걸음인식)

  • Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1233-1242
    • /
    • 2017
  • Various attempts have been made to prevent crime risk. One of the cases where outdoor pedestrians are attacked by criminals is the abnormal health condition. When a mental or mental condition that can not sustain normal walking due to drunkenness is exposed, the case of being a crime is revealed through crime case analysis. In this study, we propose a method for estimating the state of an individual that can be detected in outdoor activities. In order to avoid the inconvenience of installing a separate terminal for event information transmission of sensors and sensors, it is possible to estimate an abnormal state by using a 3-axis acceleration sensor built in a smart phone. The state of the user can be estimated by analyzing the momentum of the user and analyzing it with the passage of time. It is possible to distinguish the flow of time at regular intervals, to recognize the activity patterns in each time band, and to distinguish between normal and abnormal. In this study, we have evaluated the total amount of kinetic energy and kinetic energy in each direction of the acceleration sensor and the Fourier transformed value of the total energy amount to distinguish the abnormal state.

Effects of hallux valgus angle on one-legged stance and gait parameters in young adults: a preliminary study

  • Ji, Minkyung;Park, Hyodong;Lee, Heeyeon;Yoo, Minjoo;Ko, Eunsan;Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Objective: Hallux valgus (HV) is a common musculoskeletal deformity that is accompanied with pain and continues to decrease one's quality of life and ability to perform daily life activities by affecting gait and static stability. Therefore, this study aimed to investigate the effect of the angle of HV (HVA) and to compare the one-legged stance and gait parameters in young adults with less HV and severe HV. Design: Cross-sectional study. Methods: Forty young adults were divided into two groups, where HVA ≥15° (n=20) was defined as HV, and HVA <15° (n=20) was defined as normal. For balance ability, the center of pressure (COP) path, velocity, length of axis of the COP path, deviation of the x-axis and y-axis, and percentage of foot pressure were measured, and gait, the foot rotation angle, step length, percentage of each phase of the gait cycle, time change from the heel to forefoot, and maximum pressure of the forefoot and midfoot were measured. Results: Significant differences were found in sway length and time change from heel to forefoot during walking between the normal and HV groups (p<0.05). Most parameters were not associated with the HVA, but parameters such as length of axis and time to change from heel to forefoot were significantly associated with the HVA (p<0.05). Conclusions: These results suggest that most one-legged stance and gait parameters were not significantly affected by the HVA in young adults; therefore, future studies are needed in order to address other dynamic parameters and other methods of gait analysis for detecting clinically meaningful conditions.

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Differences in Spatiotemporal Gait Parameters and Lower Extremity Function and Pain in Accordance with Foot Morphological Characteristics (발의 형태학적 특성에 따른 시공간 보행 변인과 하지의 기능 및 통증 차이)

  • Jeon, Hyung Gyu;Lee, Inje;Lee, Sae Yong;Ha, Sunghe
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Objective: The aim of this study was to investigate the differences in spatiotemporal gait performance, function, and pain of lower-extremity according to foot morphological characteristics. Method: This case-control study recruited 42 adults and they were classified into 3 groups according to foot morphology using navicular-drop test: pronated (≥ 10 mm), normal (5~9 mm), and supinated (≤ 4 mm) feet. Spatiotemporal gait analysis and questionnaires including Foot and Ankle Ability Measure activities of daily living / Sports, Western Ontario and McMasters Universities Osteoarthritis Index, Lower Extremity Functional Scale, International Physical Activity Questionnaire, and Tegner activity score were conducted. One-way analysis of variance was used for statistical analysis. Results: The pronated feet group showed longer loading response and double limb support in both feet and increased pre-swing phase in non-dominant feet. The supinated feet group demonstrated a longer swing phase in non-dominant feet and single limb support in dominant feet. However, there was no significant group difference in function and pain of knee joint and lower-extremity between groups. Conclusion: Our results indicated that abnormal spatiotemporal gait performance according to foot morphology. Although there was no difference in lower extremity dysfunction and pain according to the difference in foot morphology, they have the possibility of symptom occurs as a result of continuous participation in activities of daily living and sports. Therefore, individuals with pronated or supinated foot should be supplemented by utilizing an orthosis or training to restore normal gait performance.

Development of a Powered Knee Prosthesis using a DC Motor (DC 모터를 이용한 동력 의족 시스템 개발)

  • Kim, Won-Sik;Kim, Seuk-Yun;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.193-199
    • /
    • 2014
  • In this paper, we present an overview of the structure of a lab-built powered knee prosthesis and the control of it. We build a powered prosthesis prototype on the basis of previous researches and aim at obtaining the essential technology related with its control. We adopt the slider-crank mechanism with a DC motor as an actuator to manipulate the knee joint. We also build an embedded control system for the prosthesis with a 32-bit DSP controller as a main computation unit. We divide the gait phase into five stages and use a FSM (Finite State Machine) to generate a torque reference needed for each stage. We also propose to use a position-based impedance controller for driving the powered knee prosthesis stably. We perform some walking experiments at fixed speeds on a tread mill in order to show the feature of the built powered prosthesis. The experimental results show that our prosthesis has the ability to provide a functional gait that is representative of normal gait biomechanics.

The Effects of Aerobic Exercise on Hormones, Blood Lipids and Body Composition in Middle-Aged Obese Women according to $\beta$3-Adrenergic Receptor Gene Polymorphisms (비만 유전자 유.무에 따른 유산소 운동요법이 중년 비만여성의 대사조절 호르몬, 혈청지질 및 신체구성에 미치는 효과)

  • Kim In-Hong
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.6
    • /
    • pp.1108-1116
    • /
    • 2004
  • Purpose: This research was conducted to provide basic information about the effects of aerobic exercise on physiological change in middle-aged obese women according to differences of ${\beta}$3-adrenergic receptor polymorphisms. Method: Twenty-nine middle aged obese women with over 30%BMI were divided into three groups according to ${\beta}$3-adrenergic receptor gene polymorphism[Variable Group(VG):9, Normal Group(NG):10, Control Group(CG):10]. The VG and NG groups performed walking at 50% exercise intensity for 30 minutes a day, 4 days a week, for 12 weeks. The data was analyzed using the SPSS program. Result: The level of leptin, insulin and % body fat in the VG and NG groups was significantly lower than those of the CG after 12 weeks. In addition, the level of HDL-C in the VG and NG was significantly higher than that of the CG after 12 weeks. However, TC, TG and body weight between groups didn't appear significant at the end of 12 weeks. Conclusions: Aerobic exercise didn't cause differences in persons with differing ${\beta}$3-adrenergic receptor gene polymorphisms, but aerobic exercise affected the physiological change in middle-aged obese women. The findings suggest that aerobic exercise is a desirable nursing intervention for obesity control in middle-aged obese women.

Development of Obstacle Recognition System Using Ultrasonic Sensor (초음파 센서를 이용한 장애물 인식 장치 개발)

  • Yu, Byeonggu;Kwon, Sunwook;Kim, Jusung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • In this Paper, we Propose the Low-cost Obstacle Recognition System Utilizing the Ultrasonic Sensor. Developed Obstacle Recognition System can be used to Aid the Visually Impaired Person. The Existence of the Obstacle is Notified to the Person through the Embodied Electronic Vibration Motor. The Timing Difference from the Recognition to the Notification Indicates the Distance to the Obstacle. Pulsed Ultrasonic Signal Controlled by MCU is Utilized and the Reflected Pulse through the Obstacle gives the Developed System the Existence of the Obstacle and the Distance to the Object. Pulse is sent Repetitively to Improve the Detection Accuracy. Developed Apparatus gives 30 Degree of Detection Angle and 2cm-30cm of the Detection Range when the Apparatus is Tested under Normal Walking Environment.

Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method (전방십자인대 재건수술 환자와 정상인의 보행 연구)

  • Ko Jae-Hun;Moon Byung-Young;Suh Jeung-Tak;Son Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Effects of Exercise on Cardiopulmonary Functions and Shoulder Joint Functioning in Breast Cancer Patients undergoing Radiation Therapy after Breast Surgery (유방암 수술 후 방사선치료중인 환자를 위한 운동프로그램이 심폐기능 및 어깨관절기능에 미치는 효과)

  • 채영란;최명애
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.3
    • /
    • pp.454-466
    • /
    • 2001
  • Purpose: The purpose of this study was to determine the effects of exercise program on cardiopulmonary functions and shoulder joint functioning in breast cancer patients who under- went radiation therapy after surgery. Method: Subjects in the experimental group(N=12) participated in an exercise program for eight weeks. The Exercise program consisted of shoulder stretching, arm weight training, and walking on treadmill. Maximal oxygen uptake (v2max), maximal running time, shoulder joint range of motion, and shoulder functional assessment were determined before and after the exercise program. Baseline sociodemographic and medical data were compared between experimental group and control group using the Fisher's exact test and Mann- Whitney U test. For effects of the exercise program, repeated measures ANOVA were used. Result: 1) Following the exercise program for eight weeks, both v$\alpha$ max and maximal running time tended to increase in experimental group comparing with the control group. 2) Shoulder abduction, extension and flexion of the operated upper extremity in the experimental group comparing with control significantly increased after the exercise program(p<0.05). 3) Shoulder flexion of the normal upper extremity in the experimental group comparing with control significantly increased after the exercise program(p<0.05). Conclusion: The results suggest that the exercise program for breast cancer patients undergoing radiation therapy after breast surgery can improve shoulder functions and increase cardiopulmonary functions, which are maximal oxygen uptake and maximal running time.

  • PDF

Design and Control of a Wearable Robot for Stair-Climbing Assistance (계단 보행 근력 보조를 위한 착용형 로봇의 설계 및 제어)

  • Kim, Myeong-Ju;Kang, Byeong-Hyeon;Kim, Ok-Sik;Seo, Ki-Won;Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • This paper describes the development of a thigh wearable robot for power assistance during stair climbing. In the wearable robot developed in this study, high-power BLDC motors and high-capacity harmonic reduction gears are used to effectively assist the thigh muscle during stair climbing. In particular, normal ground and stair are distinguished accurately by using wireless smart shoes, and the stair climbing assistance is performed by activating the actuators at an appropriate time. Impedance of the hip joint was effectively reduced by performing friction compensation of the gears, and a wearing adjustment mechanism was designed to fit the robot to the thigh by conveniently modifying the width and tilting angle of the robot using set collars. Consequently, the performance of the developed thigh wearable robot was verified through stair climbing experiments with EMG measurement.