• Title/Summary/Keyword: NORMAL WALKING

Search Result 375, Processing Time 0.036 seconds

The Difference of EEI through the Slope of Stairs (계단 높이에 따른 에너지소모지수(EEI)의 변화)

  • Lee, Jung-Rim;Ahn, Duck-Hyun;Kim, Yu-Mi
    • Physical Therapy Korea
    • /
    • v.6 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Going up and down the stairs is a repeated task in the activities of daily living. These activities are needed during the recovery process with impaired lower limbs. This paper presents the difference of EEI (energy expenditure index) through the slope of stairs. Twenty-one normal young adults took a part in this study (11 males, 10 females). They stepped up and down the stairs which had two different slopes for 5 minutes. Resting heart rate, walking heart rate, and moving distance were recorded. EEI was calculated from the heart rate and moving speed which was calculated by the distance of movement. Data were analyzed by repeated two-way ANOVA with SAS program and the difference of EEI through the slope of stairs was not statistically significant (p=0.9971). The results show that EEI was not affected by the slope of stairs in normal people. But distance of movement (p=0.0067) and speed (p=0.0064) had a significant difference.

  • PDF

Evaluation of Dynamic Characteristics of Slipmeters with Force Platform (하중판을 이용한 미끄러짐 측정기의 동력학적 특성 평가)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • The purpose of this study were to evaluate the dynamic characteristics of the portable slipmeters with respect to actual slipping and to compare their output with those of force platform. The selected slipmeters were commonly used devices for slipperiness measurement in situ floors. Their output quantity represented force (BOT-3000), loss of energy(British pendulum striker) and angle of inclination(English XL). The validity of these devices was studied with respect to actual slipping using a force platform. The precision of these devices was also evaluated with force platform. Based on dynamics of human subject behavior when slipping during normal walking, the all devices tested in this study showed poor performances: low built up ratio, low normal pressure, and long contact time prior to slip. Nevertheless, their results reasonably correlated with those calculated from the ground reaction forces generated by the operation of the selected slipmeters on the force platform although the absolute values of COF from these three devices could be quite different. Also the results showed good repeatability under the some test conditions.

Foot Reconstruction using Radial Forearm Free Flap - Review of 21 Cases - (요측 전완부 피판을 이용한 족부 재건 - 21례에 대한 임상적 고찰 -)

  • Lee, Kwang-Suk;Lee, Seoung-Joon;Song, Hyung-Suk;Kim, Sang-Bum
    • Archives of Reconstructive Microsurgery
    • /
    • v.12 no.2
    • /
    • pp.119-124
    • /
    • 2003
  • Introduction : The purpose is a retrospective evaluation of the clinical results of the radial forearm flap transfer for foot reconstruction. Materials and methods : We evaluated 21 cases with medical records including etiology, wound dimension, presence of infection, associated fracture, ischemic time of free flap, complication of donor and recipient site. The final results were evaluated with our clinical score (walking, shoe-in, cosmetic). Results : Defects were located on the heel (12 cases), dorsum of foot (4 cases) and sole (5 cases). Mean wound dimension was $7.56{\times}6.0cm$, and mean ischemic time of free flap was 94.5minute. There were superficial skin necrosis (1 case), recurrent ulceration (2 cases) in recipient site, and no complication in donor site but complaint about cosmetic problem (3 cases). The clinical score showed excellent in 14 cases, good in 4 cases, fair in 1 case and poor in 2 cases. Conclusion : We consider the radial forearm flap could provid the stable and durable restoration of normal foot contour without debulking in the foot reconstruction and achieved normal ambulation and cosmetic satisfaction.

  • PDF

Effects of Knee Joint Muscle Fatigue and Overweight on the Angular Displacement and Moment of the Lower Limb Joints during Landing (무릎 관절 근육 피로와 과체중이 착지 시 하지 관절의 각변위와 모멘트에 미치는 영향)

  • Kim, Tae-Hyeon;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.63-76
    • /
    • 2013
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on the angular displacement and moments of the lower limb joints during landing. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. The knee joint muscle fatigue during landing was found to increase the dynamic stability by minimizing the movements of the coronal and horizontal planes and maintaining a more neutral position to protect the knee. The effect of body weight during landing was better in the normal weight group than in the overweight group, with the lower limbs performing their shock-absorbing function in an efficient manner through increased sagittal movement. Therefore, accumulated fatigue of knee joint muscles or overweight may be highly correlated with the increase in the incidence of injury during landing after jumping, descending stairs, and downhill walking.

Floor Slipperiness Effect on the Biomechanical Study of Slips and Falls

  • Myung, Ro-Hae;Smith, James L.;Lee, Soon-Yo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.337-349
    • /
    • 1996
  • A study was conducted to find the possible relationship between slip distance and dynamic coefficient of friction (DCOF) through the biomechanical study of slips and falls using a broader variety of floors and levels of slipperiness than those used before. Four different floor surfaces covering the full range of floor slipperiness (with and without on oil contaminant) were prepared for ten subjects with each walking at a fixed velocity. The results showed that slip distance and heel velocity had a decreasing trend while stride length had a increasing trend as DCOF increased. The contaminant effect overpowered floor slipperiness effect because a higher DCOF surface with oil contaminant created longer slip distance than the lower DCOF with dry floor. Normal gait pattern and suggested heel velocity (10 to 20 cm/sec) were seen on dry floors but abnormally longer stride length and 5 to 10 times faster heel velocity were found an oily floors. In other words, faster heel velocity (greater than 10 to 20 cm/sec) is recommended to measure DCOF on oily floors because the assumption of normal gait was no longer valid.

  • PDF

Measurement of Stride Length Using Optical Method (광학적 분석방법을 이용한 보폭측정)

  • Jung, Gu-In;Jun, Jae-Hoon;Lee, Kang-Hwi;Song, Min-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1116-1122
    • /
    • 2008
  • Since conventional methods for measuring stride length(distance) are many weaknesses, optical methods have been developed to measure stride length(distance) of human pedestrians. IR(Infrared) elements and Power LED(Light Emitting Diode) with two types of lens were used to correlate detected light intensity with stride length(distance). The suggested methods in this study are simple, convenient, and cost effective. The results can be used to analyze walking patterns of normal and disabled men, and to monitor the recovering processes of the disabled patients.

Analysis of human gait using inverse kinematics (역기구학을 이용한 보행 분석)

  • 최경암;정민근;염영일
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis is based on a gait model consisting of a torso and two legs. Each let has three segments: thigh, shank, foot, and has six degrees-of-freedom. In order to synthesize trajectories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. Hpwever, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified.

  • PDF

Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack (헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석)

  • Lee, Hyeon-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.

Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

  • Kim, Deok-Hwan;Cho, Chi-Young;Ryu, Jaehwan
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a new locomotion mode recognition method based on a transformed correlation feature analysis using an electromyography (EMG) pattern. Each movement is recognized using six weighted subcorrelation filters, which are applied to the correlation feature analysis through the use of six time-domain features. The proposed method has a high recognition rate because it reflects the importance of the different features according to the movements and thereby enables one to recognize real-time EMG patterns, owing to the rapid execution of the correlation feature analysis. The experiment results show that the discriminating power of the proposed method is 85.89% (${\pm}2.5$) when walking on a level surface, 96.47% (${\pm}0.9$) when going up stairs, and 96.37% (${\pm}1.3$) when going down stairs for given normal movement data. This makes its accuracy and stability better than that found for the principal component analysis and linear discriminant analysis methods.

A physiological assessment of stair dimensions (계단규격에 대한 생리학적 평가)

  • 명노해;이순요;김형범
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.87-90
    • /
    • 1995
  • Biomechanical can physchological approaches have provided the optimum stair dimensions but physiological approach has never been used in assessing the common method of assessing the optimum stair dimension. Therefore, this study was conducted to investigate the validity of the physiological measure of heart rate in assessing the optimum stair dimensions. Sixteen subjects were asked to walk up three different stairs with their normal walking speed. The results showed that the physiological approach with the heart rate difference was found to be valid in assessing the optimum stair dimension. The optimum stair dimension from this study (riser length for 185 mm and tread length for 310 mm) was chosen because it was similar to optimum dimension by the psychological approach (Irvine et al., 1990).

  • PDF