• Title/Summary/Keyword: NORMAL WALKING

Search Result 375, Processing Time 0.024 seconds

Modeling of Normal Gait Acceleration Signal Using a Time Series Analysis Method (시계열 분석을 이용한 정상인의 보행 가속도 신호의 모델링)

  • Lim Ye-Taek;Lee Kyoung-Joung;Ha Eunho;Kim Han-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.462-467
    • /
    • 2005
  • In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.

The Comparison of Characteristics of Foot pressure between Treadmill and Ground walking in Normal person (정상인의 평지보행과 트레드밀 보행 시 족저압의 특성 비교)

  • Kim, Ji-Hye;Oh, Tae-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • Purpose : The purpose of this study is to compare the distribution of foot pressure, knee and ankle joint angle between treadmill walking and ground walking in normal person. Methods : 18 Person of subject has participated this study, let subject to walk in ground and treadmill in order to gain data of foot distribution and knee, ankle joint angle using by parotec system. and Dartfish system. Walking velocity was constrained by 2Km/h and more 10sec. Date analysis was used by paired-t test using SPSS/PC statistical programs for window. Results : Result show that total contact times has shown symmetry between both legs, and more increase of left foot pressure in treadmill walking. Foot pressure of treadmill walking was significantly decreased in right hind foot and fore foot and hallux area. The ankle joint angle of treadmill walking was significantly decreased in initial contact phase. Conclusion : Results of this study show that foot pressure of treadmill walking was more decreased than ground walking in right hind foot and fore foot, hallux area. And the ankle joint angle of treadmill walking was significantly decreased in initial contact phase.

The Benefits of Stick Walking: Evaluation at Ankle, Knee and Hip Joints

  • Kim, Suk-Won;Lee, Jung-Yong;Park, Ki-Won;Yoon, Hoon-Yong;Park, Sung-Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.63-71
    • /
    • 2005
  • A laboratory study was performed to evaluate the effects of an aid(i.e. stick) on joint loadings. Six healthy young participants were recruited from Virginia Tech student population. Each participant has performed three normal walking and three stick walking trials. Normalized and integrated, ground reaction forces(GRFs) and joint moments were measured at ankle, knee, and hip joints from kinematic and kinetic data. The result suggests that stick walking significantly reduces vertical ground reaction force and joint moments at ankle and knee compared to normal walking.

Impact Power Characteristics by Walking for Adults (성인 보행에 따른 충격력 특성에 관한 연구)

  • Kim, Kyoung-Woo;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.800-803
    • /
    • 2005
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child and walking by adult are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact power characteristics of real impact source in an apartment buildings. This study aims to investigate the impact power and impact time of normal walking and fast walking for 62 adults. It is shown that when the weight of the person increase, the maximum impact power increases. The impact power waveform for the adults walking varies for subjects walking types. The normal walking impact power lower than that of fast walking and impact time is higher than that of fast walking. The range of the impact power generated by adults walking is less than 1000 N.

  • PDF

Analysis of Personal Gait Characteristics According to Legs Imbalance Gait (하지 보행 불균형 상태에 따른 개인별 보행 특성 분석)

  • Cho, Woo-Hyeong;Kim, Yeon-Wook;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.109-119
    • /
    • 2017
  • In the present study, to determine walking imbalance using the walking analysis method, where limitations in the existing walking analysis have been minimized, we propose a new walking analysis method that adopts the following: self-developed equipment to measure the angles of left-right hip joints and knee joints; a determination system using symmetry index (SI); and dynamic time warping (DTW) similarity analysis algorithm to analyze individual walking styles. Normal and imbalanced walking tests were conducted for 12 subjects without walking disorder. From the SI calculation to determine imbalanced walking, both the normal and imbalanced walking styles can be determined using the angle measurements of the left-right hip joints and knee joints. In the analysis of the individual walking styles, the similarities at the center of the lower back, left-right thighs, and dorsum of the feet of the 12 subjects in both normal and imbalanced walking cases were compared. From the similarity analysis of the measured values during the normal and imbalanced walking tests, I determined that the walking pattern does not maintain the same stance when the body parts move during walking.

Correlation Between Walking Speeds and Lower Extremities Joint Moment in Obese (비만인들의 보행속도와 하지관절모멘트에 대한 상관관계 분석)

  • Shin, Sung-Hyoo;Kim, Tae-Whan;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.105-115
    • /
    • 2006
  • The purpose of this study is to elucidate the mechanical characteristics of lower extremity joint movements at different walking speeds in obese people and suggest the very suitable exercise for obese person's own body weight and basic data for clinical application leading to medical treatment of obesity. This experimental subjects are all males between the ages of 20 and 30, who are classified into two groups according to Body Mass Index(BMI): one group is 15 people with normal body weight and the other 15 obese people. Walking speed is analysed at 3 different speeds ($1.5^m/s$, $1.8^m/s$, $2.1^m/s$) which is increased by $0.3^m/s$ from the standard speed of $1.5^m/s$. We calculated joint moments of lower extremity during stance phase through video recording and platform force measurement.Two-way ANOVA(Analysis of Variance, Mix) is applied to get the difference of moments according to walking speeds between normal and obese groups. Pearson's Correlation Analysis is applied to look into correlation between walking speeds and joint moments in both groups. Significance level of each experiment is set as ${\alpha}=.05$. As walking speed increases maximum ankle plantar flexion moment in the stance phase is smaller in obese group than in normal group, which is suggestive of weak toe push-off during terminal stance in obese group, and the highest maximum ankle plantar flexion moment in obese group during the middle speed walking($1.8^m/s.$). Maximum ankle dorsal flexion moment in obese group is relatively higher than in normal group and this is regarded as a kind of compensatory mechanism to decrease the impact on ankle when heel contacts the floor. Maximum knee flexion and extension moments are both higher in normal group with an increase tendency proportional to walking speed and maximum hip flexion and extension moments higher in obese group. In summary, maximum ankle plantar flexion moment between groups(p<.025), maximum knee moment not in flexion but in extension(p<.001) within each group according to increasing walking speed, and maximum hip flexion and extension moment(p<.001 and p<.004, respectively according to increasing walking speed are statistically significant but knee and hip moments between groups are not. Pearson correlation are different: high correlation coefficients in maximum knee flexion and extension moments, in maximum hip extension moment but not hip flexion, and in maximum ankle dorsal flexion moment but not ankle plantar flexion, in each group. We suspect that equilibrium imbalance develops when the subject increases walking speed and the time is around which he takes his foot off the floor.

Effect of Walking Speed on Angles of Lower Extremity and Ground Reaction Force in the Obese (보행속도가 비만인의 하지관절각과 지면반발력에 미치는 영향)

  • Kim, Tae-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2006
  • The purpose of this study is to elucidate how walking speed influences on change of angles of lower extremity and ground reaction force in normal and obese people. One group with normal body weight who were experimented at a standard speed of 1.5m/s and the other obese group were experimented at two different walking speeds (standard speed of 1.5m/s and self-selected speed of 1.3m/s). We calculated angles of lower extremity and ground reaction force during stance phase through video recording and platform force measuring. When the obese group walked at the standard speed, dorsi-flexion angle of ankle got bigger and plantar-flexion angle of ankle got smaller, which were not statistically significant. There was no significant difference of knee joint angles between normal and obese group at the same speed walking but significant post hoc only for the first flexion of knee joint in obese group. $F_z1$ was bigger than $F_z3$ in vertical axis for ground reaction force in both groups at the standard speed walking and the same force value at self-selected speed in obese group. $F_y3$ was always bigger than $F_y1$ in anterior-posterior axis in both groups.

The Influence of Walking on the Crural Muscle Tone and Stiffness in Pronated Foot

  • Wang, Joong San
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.2
    • /
    • pp.1486-1489
    • /
    • 2018
  • This study aimed to investigate the influence of walking on crural muscle tone and stiffness in individuals with bilateral pronated foot. This study consisted of 16 healthy male. Subjects were divided into a pronated foot group (n = 8) and a normal foot group (n = 8). The navicular drop test on both foot and muscle tone and stiffness in tibialis anterior muscle, medial gastrocnemius muscle, and peroneus longus muscle of both lower extremities were measured before and after 30 min of walking. In this study, the measured navicular drop test before walking was significantly different between pronated foot group and a normal group(p < .05). After 30 min of walking, significantly, increased medial gastrocnemius muscle stiffness of the non-dominant leg was found in the pronated foot group (p < .05). However, there was no significant difference in medial gastrocnemius muscle stiffness between the two groups (p > .05). Based on this study, pronated foot needs to be managed to prevent the abnormally increased medial gastrocnemius muscle stiffness.

Comparison of Impulses Experienced on Human Joints Walking on the Ground to Those Experienced Walking on a Treadmill

  • So, Byung-Rok;Yi, Byung-Ju;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.243-252
    • /
    • 2008
  • It has been reported that long-term exercise on a treadmill (running machine) may cause injury to the joints in a human's lower extremities. Previous works related to analysis of human walking motion are, however, mostly based on clinical statistics and experimental methodology. This paper proposes an analytical methodology. Specifically, this work deals with a comparison of normal walking on the ground and walking on a treadmill in regard to the external and internal impulses exerted on the joints of a human's lower extremities. First, a modeling procedure of impulses, impulse geometry, and impulse measure for the human lower extremity model will be briefly introduced and a new impulse measure for analysis of internal impulse is developed. Based on these analytical tools, we analyze the external and internal impulses through a planar 7-linked human lower extremity model. It is shown through simulation that the human walking on a treadmill exhibits greater internal impulses on the knee and ankle joints of the supporting leg when compared to that on the ground. In order to corroborate the effectiveness of the proposed methodology, a force platform was developed to measure the external impulses exerted on the ground for the cases of the normal walking and walking on the treadmill. It is shown that the experimental results correspond well to the simulation results.

A Study on the Effect of Arch Support for Improvement of Muscle Activity (운동효과 증진을 위한 Arch Support 효과에 관한 연구)

  • Lee, Chang-Min;Kim, Jin-Hoon;Oh, Yeon-Ju;Kim, Dae-Woong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2008
  • Walking shoes for walking and jogging have been used to enjoy lots of leisure time. Functional shoes such as walking shoes have special functions to improve body motility by changing of shoe shapes. The walking shoes could improve the motility by structural transformation of outsole as increase degrees of heel and toe. The study on insoles has not been conducted enough on the contrary of the study of outsole. The purpose of this study is to perform ergonomics analysis whether the Arch Supported insoles have an improving effect of muscle activities or not. Experiments were performed with 6 subjects who are health and haven't experienced any diseases past. EMG(Electromyography) and Foot Pressures were measured repeatedly for 5 seconds at 0 hour, after 1 hour and after 2 hours of walking. Insoles used for experiment are normal insole, insole inserted Arch Support and pad. The electrodes for EMG measurement were set on waist (erector spinae), and thigh (vastus lateralis), calf (gastrocnemius). Evaluations of EMG were analyzed by shift of MF (Median Frequency) and MPF (Mean Power Frequency). Foot Pressure was analyzed by mean pressure of feet and change of walking time. As results, Arch Support insole had larger frequency shift value than that of normal insole. Frequency shift between Arch Support insoles and normal insole showed significant difference on 95% confidence interval. And insole 1 has the highest value of frequency shift. For results of foot pressure, Arch Support insoles show continuous decreasing tendency when comparing with normal insoles by changing of times. Also, insole 1 has the highest decreasing value of foot pressure. Therefore, this study presented that the Arch Support insole can promote muscle activities and improves comfort for a prolonged walking.