• 제목/요약/키워드: NONLINEAR PHENOMENON

검색결과 359건 처리시간 0.024초

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

정사각형 외팔보에서의 일대일 공진 (One to One Resonance on the Quadrangle Cantilever Beam)

  • 김명구;박철희;조종두
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

RBF 네트워크를 이용한 비선형 채널 등화에 관한 연구 (A study on nonlinear channel equalization using RBF network)

  • 전선도;위진우;강철호
    • 한국통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.64-71
    • /
    • 1997
  • Digital communication channels are imparied by linear effects such as dispersion, ISI(intersymbol Interference), fading phenomenon etc. But, the practical channel equalization system is required to design for compensating the nonlinear distortion caused by harmonic distortion etc. This paper is a study on the performance of nonlinear channel equalization using RBF(Radial Basis Funclion) network, which has the equivalent structure to the optimal Basian filter. Expecially, the variance of RBF network is modifiedby nonlinear polynomial filters to compare the convergence characteristic of nonlinear channel equalization. Experimental results show that the modified RBF network achieves the faster convergence property than conventional RBF network. Moreover, the RBF network ofhigher order variance modified represents the better performance than that of lower order variance in the bandpass channels and second/third order polynomial channels.

  • PDF

전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석 (Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash)

  • 최연선;이봉현;신용호
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

비선형 임계속도 검증을 위한 실험적 연구 (An Experimental Study on Validation of Nonlinear Critical Speed)

  • 정우진;김성원
    • 한국철도학회논문집
    • /
    • 제3권1호
    • /
    • pp.12-18
    • /
    • 2000
  • This paper addresses the experimental study on the nonlinear critical speed and the validity of simple prediction formulation. The experiment on nonlinear critical speed is carried out using roller rigs, which has been impossible on track because of a possibility of an accident. In addition, experiment for a bogie is performed to check the difference in modeling a full railway vehicle and a bogie. It is found that nonlinear critical speed proves to be an inherent phenomenon of a railway vehicle itself and the difference of test results between a full railway vehicle and a bogie is comparatively negligible. Finally. the accuracy of simple prediction formulation for outbreak velocity and response frequency in hunting is investigated.

  • PDF

Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.273-288
    • /
    • 2024
  • The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.

종/횡운동 coupling 상태에 대한 비행역학 연구 (Study on dynamics of the cross-couplig phenomenon between longitudinal and lateral motion)

  • 김성관;하철근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1300-1303
    • /
    • 1996
  • In this paper a typical problem is examined that a light, general aviation airplane, such as Cessna or Navion, in gliding turn flight shows helical-dive phenomenon when pilots try to stop the descent by using elevator only. It is known from pilot's experience that in a certain flight trim it is impossible to recover from helical-dive by using elevator only. From this study it is shown that helical-dive phenomenon is involved with longitudinal/lateral dynamics coupling to airplane's aerodynamics. Also this phenomenon consists of three parts of flight dynamics; first of all, fast longitudinal motion occurs, then is followed by a little slow lateral motion, and finally logitudinal/lateral coupled motion is fully developed.

  • PDF

세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성 (Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing)

  • 이동현;김영철;김병옥;안국영;이영덕
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석 (Stability Analysis of Floating Ring Bearing Supported Turbocharger)

  • 이동현;김영철;김병옥
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

Reanalysis of Dissimilation in Harmonic Phonology

  • Oh, Kwan-Young
    • 영어어문교육
    • /
    • 제8권2호
    • /
    • pp.91-104
    • /
    • 2003
  • The purpose of this paper is to show that when we consider the analytical ways of Dissimilation, it becomes clear that it is insufficient to deal with it in just linear and nonlinear ways. Thus within a new framework to be introduced in this paper, Harmonic Phonology, we will reanalyze the phenomenon. We will also consider how the Obligatory Contour Principle (hereinafter, OCP) is used as both rule trigger and rule blocker in rule application, and works as a universal constraint, that is, a filtering device of ill formed representation. As we also consider it under the new framework, we can show the application position and motivation of rules appropriately and represent the phenomenon synthetically. (Yosu National University)

  • PDF