• Title/Summary/Keyword: NO production inhibitory effect

Search Result 661, Processing Time 0.04 seconds

Immunomodulatory Effects of Euglena gracilis Extracts (Euglena gracilis 추출물의 면역조절 및 생리활성 분석)

  • Yu, Sun Nyoung;Park, Bo Bae;Kim, Ji Won;Hwang, You Lim;Kim, Sang Hun;Kim, Sunah;Lee, Taeho;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2021
  • Euglena gracilis is a microalga of great biotechnological interest that can create high levels of bioactive compounds, such as tocopherol, paramylon, and folic acid. The objective of this study was to investigate the biological activities of extracts from E. gracilis, especially those focused on immunological activity. E. gracilis biomass was extracted with hot water (HWE) and the remaining pellet was continuously extracted with methanol (HWME). First, we examined the effect of two extracts from E. gracilis on the production of nitric oxide (NO) and the expression of pro-inflammation cytokines, including IL-1β, IL-6, and TNF-α in murine macrophage RAW 264.7 cells. HWE treatment dose-dependently increased the production of IL-1β and TNF-α. On the other hand, treatment with HWME significantly decreased the generation of NO and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide (LPS)-stimulated macrophage cells. In addition, other biological activities of the extracts were further analyzed: α-glucosidase inhibition, protein tyrosine phosphatase (PTP1B) inhibition, tyrosinase inhibition, xanthine oxidase (XO) inhibition, and angiotensin-converting enzyme (ACE) inhibition. Analysis of these biological activities showed that HWE has more inhibitory effects than HWME against α-glucosidase, tyrosinase, and XO agents. However, the inhibition of PTP1B and ACE with HWME were higher than with HWE. Taken together, the results suggested that E. gracilis possesses various biological activities―especially immunological capabilities―through regulation of cytokine production. Therefore, E. gracilis extract may be potentially useful for food material with immune-regulating effects.

Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry

  • Karimi Torshizi, M.A.;Rahimi, Sh.;Mojgani, N.;Esmaeilkhanian, S.;Grimes, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1495-1500
    • /
    • 2008
  • In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.

The Effects of Houttuyniae Herba extract on the Activity of Anti-bacteria, Anti-inflammation and Anti-oxidation (어성초(魚腥草) 추출물의 항여드름 효과에 관한 연구)

  • Jeon, Oh-do;Seo, Hyeong-Sik
    • Journal of Pharmacopuncture
    • /
    • v.11 no.1
    • /
    • pp.119-125
    • /
    • 2008
  • Objective : This experimental study was performed to investigate the effects of Houttuyniae Herba extract on anti-inflammation and anti-oxidation. Methods : The cytotoxicity of Houttuyniae Herba water extract and ethanol extract about viability of Raw 264.7 cell were tested using a colormetric tetrazolium assay(MTT assay). We investigated the inhibitory effects of Houttuyniae Herba water extract and ethanol extract on Propionibactrium acnes using paper disk diffusion method. To investigate the anti-inflammation effects of Houttuyniae Herba water extract and ethanol extract on LPS-induced macrophage Raw 264.7 cell, we used ELISA kit. We evaluated anti-oxidation effects of Houttuyniae Herba water extract and ethanol extract on HaCaT cell by Enzyme recycling method. Results : 1. In Houttuyniae Herba water extract and ethanol extract, cell toxicity depended on the density and wasn't difference between two extracts. 2. Houttuyniae Herba water extract and ethanol extract has not the significant inhibition effect of Propionibactrium acnes. 3. Concentration of 50, $100{\mu}g/m{\ell}$ Houttuyniae Herba water extract inhibited the production of NO in the Raw 264.7 cell stimulated with LPS. 4. All extracts except for $20{\mu}g/m{\ell}$ Houttuyniae Herba water extract showed anti-oxidation effect by decreasing the DPPH radicals. Conclusion : These results indicate that Houttuyniae Herba extract has anti-inflammation and anti-oxidation effects. If further study is performed, the use of Houttuyniae Herba extract will be valuable and benificial in the therapy of Propionibactrium acnes.

Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

  • Yoon, Hoon Seok;Lee, Nam-Ho;Hyun, Chang-Gu;Shin, Dong-Bum
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a $200{\mu}g/mL$ concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent.

Experimental Study for Effect of Banhasasim-tang on Mice with Reflux Esophagitis (역류성 식도염 유발 생쥐의 반하사심탕(半夏瀉心湯)투여 효과에 대한 실험 연구)

  • Jang, Myeong-Woong;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.362-374
    • /
    • 2013
  • Objectives : This study was carried out to investigate the inhibitory effect of Banhasasim-tang on early reflux esophagitis by control of gastric peristalsis and the lower esophageal sphincter in mice. Methods : Experimental mice were classified into three groups. The normal group were mice with no inflammation. The control group were mice with gastroesophageal reflux elicited by alcohol. The sample group were mice administered Banhasasim-tang after gastroesophageal reflux elicitation. We observed morphological change and production of ghrelin, substance P, and inducible nitric oxide synthase (iNOS) in gastroesophageal junction mucosa. In addition, we examined change of epithelial junction in esophageal mucosa and change of lower esophageal sphincter distribution. Results : The migration of inflammation-related cells in lamina propria of gastroesophageal junction decreased more in the sample group than in the control group. The positive reaction of ghrelin, substance P, and iNOS significantly decreased more in the sample group than in the control group (p<0.05). Injury of the epithelial junction in the esophageal mucosa and outer oblique layer in the lower esophageal sphincter were significantly mitigated by Banhasasim-tang administration in the sample group (p<0.05). Conclusions : According to the above results, it is supposed that Banhasasim-tang inhibits early reflux esophagitis by controlling not only gastric peristalsis and acid secretion through ghrelin, and substance P but also the lower esophageal sphincter through iNOS.

Anti-diabetic Effects of CCCA, CMESS, and Cordycepin from Cordyceps militaris and the Immune Responses in Streptozotocin-induced Diabetic Mice

  • Yun, Yun-Ha;Han, Shin-Ha;Lee, Seung-Jeong;Ko, Sung-Kwon;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyung-Jae
    • Natural Product Sciences
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • Anti-diabetic effect of various fractions of Cordyceps militaris (CM), CCCA (crude cordycepin containing adenosine), CMESS (ethanol soluble supernatant), and cordycepin were evaluated in streptozotocin (STZ) induced diabetic mice, CMESS showed potent inhibitory activity of 34.7% in starch-loaded mice (2 g/kg) while acarbose as a positive standard exhibited 37.8% of inhibition rate. After 3 days administration (50 mg/kg), cordycepin (0.2 mg/kg), and acarbose (10 mg/kg) dramatically reduced blood glucose level (inhibition ratio: 46.9%, 48.4% and 37.5% respectively). CCCA that has high contents of cordycepin (0.656 mg/4 mg) did not influence on reducing blood glucose level. The proliferation of splenocytes and peritoneal macrophages derived from STZ-induced diabetic mice administered samples were evaluated out by addition of mitogens to see the stability of the usage of these herbal medicines. Proliferation of T-lymphocyte was significantly decreased; while NO production was increased more than two fold to STZ control in the cordycepin-administered group. Changes of serum enzyme levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) were also evaluated. Cordycepin administered group was appeared to acarbose. We conclude that CMESS and cordycepin may be useful tools in the control of blood glucose level in diabetes and promising new drug as an anti-hyperglycemic agent without defects of immune responses and other side effects.

New Whitening agent: Kojyl-APPA

  • Hwang, Jae-Sung;Kim, Duck-Hee;Soomi Anh;Baek, Heung-Soo;Park, Hyunjung -Jin;Lee, Jin-Young;Lee, Byeong-Gon;Ihseop Chang;Kang, Hak-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • Exposure of the human skin to UV-light can cause sun-tanning, photoaging and even photo-carcinogenesis. Melanin is important in protecting the skin against UV damage, but excessive or uneven melanin production can lead to the formation of freckles and aged spot. Control of hyperpigmentation is becoming even more important as aged population continues to grow. These needs led us to develop effective and safe depigmenting-agent, kojyl 3-aminopropyl phosphate (kojyl-APPA), called Whitegen. The development of whitegen was based on the fact that phosphate group of 3-aminopropyl phosphate can make kojic acid more compatible to the skin membrane and more stable. Instability of kojic acid has been a problem in cosmetic use. The insertion of phosphoester group has been recognized as a powerful tool to improve such physical properties as solubility and stability, because the phosphodiester residue is well characterized as a non-toxic moiety, having a high affinity for cell membranes. Kojyl-APPA showed no tyrosinase inhibition effect compared to kojic acid in vitro, but showed tyrosinase inhibition effect in situ. It means that kojyl-APPA is converted to kojic acid enzymatically in cells. Kojyl-APPA showed the inhibitory activity on melanin synthesis in mouse melanoma and normal humal melnaocytes and also showed long-lasting stability in comparison with its original form (kojic acid). Kojyl-APPA showed depigmenting effects when applied to UVB-induced hyperpigmentated region of guinea pig skin. Based on these results, kojyl 3-aminopropyl phosphate can be used as a safe and effective ingredient for the brightness and cleanness of skin.

  • PDF

Anti-inflammatory Effects of Cheongnoimyungshin-hwan in Microglia Cells (미세아교세포의 염증반응에 미치는 청뇌명신환의 영향)

  • Im, Yong-Gyun;Choi, Yung-Hyun;Hwang, Won-Deok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.4
    • /
    • pp.423-434
    • /
    • 2014
  • Objectives: Activated microglia cells play an important role in inflammatory responses in the central nervous system (CNS) which are involved in neurodegenerative diseases. We attempted to determine the anti-inflammatory effects of Cheongnoimyungshin-hwan (CNMSH) in microglia cells. Methods: We examined the effect of CNMSH on the inflammatory responses in BV2 microglia cells induced by lipopolysaccharide (LPS) and explored the mechanism underlying the action of CNMSH. Results: BV2 cells treated with LPS showed an up-regulation of nitric oxide (NO), prostaglandin $PGE_2(PGE_2)$ and interleukin $1{\beta}(IL-1{\beta})$ release, whereas CNMSH suppressed this up-regulation. CNMSH inhibited the induction of COX-2, iNOS and $IL-1{\beta}$ proteins in LPS-treated BV2 cells and blocked the LPS-induced phosphorylation and nuclear translocation of nuclear factor ${\kappa}B(NF-{\kappa}B$). Furthermore, CNMSH attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase and p38 mitogen activated protein kinase (MAPK), as well as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, but did not inhibit the LPS-induced phosphorylation of c-Jun amino terminal kinase. Conclusions: These results suggest that the inhibitory effect of CNMSH on the LPS-induced production of inflammatory mediators and cytokines in BV2 cells is associated with the suppression of the $NF-{\kappa}B$ and PI3KAkt signaling pathways.

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin;Xin, Yang;Wu, Zhi-yuan;Sun, Hai-jian;Huang, De-jian;Sun, Zhi-qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.

Comparative Study of Bojungikgitang in Korea, Japan and China on the Anti-Inflammatory and Anti-Oxidative Effects (보중익기탕 (補中益氣湯)의 한국, 중국, 일본 처방에 대한 항염증 및 항산화 효과 비교 연구)

  • Choi, Hye-Min;Kim, Hui-Hun;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • Objectives : Bojungikgitang (BJT), the Oriental medical prescription has been traditionally used about improvement of immune response and infective disease at Asian nation. In this study, we has compared about the anti-inflammatory and antioxidative effects on BJT of three countries including Korea (Korean Traditional Medicine, KTM), China (Traditional Chinese Medicine, CTM) and Japan (Japanese Traditional Medicine, JTM). Methods : We has basically using LPS-stimulated RAW 264.7 cells. The expression of these inflammatory mediators has measured using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Also, free radical scavenging assay has tested for anti-oxidative activity as well as the contents of total flavonoid and polyphenol. Results : As a result, we were founded the inhibitory effects of BJT (KTM, CTM, JTM) on LPS-induced production of NO, TNF-${\alpha}$ and IL-6 as well as the anti-oxidative activities. Especially the KTM was most effective in anti-inflammatory and anti-oxidative activities. Conclusions : These results indicate that BJT (KTM, CTM, JTM) has a good anti- inflammatory and anti-oxidative effects. But, there were degree of effects on between pharmacopoeia of the countries. Thus, further study is required that find appropriate methods for extracting as well as establish of standardized processes in order to improve the quality of BJT (KTM, CTM, JTM) as an anti-inflammatory and anti-oxidative agent for treatment of inflammatory diseases.