• 제목/요약/키워드: NO gas

검색결과 3,463건 처리시간 0.029초

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group

  • Park, Mi-Seon;Lee, Sangmin;Jung, Min-Jung;Kim, Hyeong Gi;Lee, Young-Seak
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.19-25
    • /
    • 2016
  • Activated carbon fiber (ACF) surfaces are modified using an electron beam under different aqueous solutions to improve the NO gas sensitivity of a gas sensor based on ACFs. The oxygen functional group on the ACF surface is changed, resulting in an increase of the number of non-carbonyl (-C-O-C-) groups from 32.5% for pristine ACFs to 39.53% and 41.75% for ACFs treated with hydrogen peroxide and potassium hydroxide solutions, respectively. We discover that the NO gas sensitivity of the gas sensor fabricated using the modified ACFs as an electrode material is increased, although the specific surface area of the ACFs is decreased because of the recovery of their crystal structure. This is attributed to the static electric interaction between NO gas and the non-carbonyl groups introduced onto the ACF surfaces.

휴대용 가스렌지 연소에 의한 공기오염물질의 발생량 및 실내환경의 필요 환기량 (Source Emission Rate on Air Pollutants from Portable Gas Range and Optimal Ventilation Rate in Indoor Environment)

  • 임성국;김영희;양원호
    • 한국환경보건학회지
    • /
    • 제33권2호
    • /
    • pp.92-97
    • /
    • 2007
  • A series of source tests were conducted to characterize emissions of nitrogen oxide(NOx, NO, $NO_2$), carbon mon oxide(CO), carbon dioxide$(CO_2)$ and total VOCs from portable combustion devices in steady-state using well-mixed chamber. Since use of portable gas range is widespread in houses and restaurants in Korea, it is important to characterize the emission of air pollutants and suggest optimum ventilation rate. Ranges of emission rates of air pollutants from portable gas ranges were $NO \;0.551\sim0.939mg/hr,\;NO_2\;0.354\sim1.080mg/hr,\;NO_x\;1.207\sim1.631mg/hr,\;CO\;1.389\sim4.21mg/hr,\;CO_2\;2426.823\sim2973.495mg/hr$, and VOCs $0\sim0.119mg/h$. Mean of personal exposure and indoor environment level of $NO_2$ by combustion of portable gas range were 74.7 ppb and 65.4 ppb, respectively, suggesting persons using portable gas range in houses and restaurants might be highly exposed. Required ventilation rate to control the air pollutants emitted from portable gas range was maximumly $3.131m^3/hr$ on the basis of $NO_2$ indoor air quality standard.

주택특성에 관련된 실내 이산화질소 농도에 관한 연구 (A Study on Concentration of Indoor Nitrogen Dioxide in Relation to House Characteristics)

  • 양원호;배현주;김현용;정문식;정문호
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.85-92
    • /
    • 1999
  • Indoor air quality tends to be the dominant contributor to personal exposure because most people spend over 90% of their time indoors. For some contaminants, exposure to indoor air poses a potentially greater health threat than outdoor air exposures. Indoor nitrogen dioxide ($NO_2$) levels are mainly affected gas range, flue gas spillage, kerosene heaters, wood-burning appliances and cigarette smoke. In addition, indoor $NO_2$ levels are influenced by such house characterization as surface reaction and air exchange rate. In this study, the measurements of indoor and outdoor $NO_2$ concentrations were taken using identical protocols, and information was collected on housing characteristics using identical questionnaires in 14 houses out of 15 houses for daily 30 daily 30 days in Brisbane, Australia.The usage of gas range was the most contributing factor in indoor $NO_2$ concentration in relation to house characteristics. Average indoor and outdoor ratios of NO2 concentration in electronic and gas cooking houses were $0.6{\pm}0.1$ and $0.9{\pm}0.2$, respectively. The frequency distributions of $NO_2$ concentration in each house were approximately log-normal Geometric mean of indoor $NO_2$ concentrations of electronic and gas cooking houses for daily 30 days ranged from 2.5 ppm to 11.5 ppm with a mean 6.8 and from 4.7 ppm to 28.6 ppm with a mean 15.6 ppm, respectively. The $NO_2$ concentrations between electronic and gas cooking houses were significantly different (p<0.05). Since each house has different life-style and house characteristics, sampling interval to measure the $NO_2$ levels was recommended above 7 days.

  • PDF

Spatial Distribution of Excited Argon Species in and Inductively Coupled Plasma

  • 최범석
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1172-1174
    • /
    • 1998
  • Spatial(radial and height) distributions of excited argon species are measured for an inductively coupled plasma under five operating conditions: 1) no carrier gas, 2) carrier gas without aerosol, 3) carrier gas with desolvated aerosol, 4) carrier gas with aerosol, 5) carrier gas with aerosol and excess lithium. A complete RF power mapping of argon excited states is obtained. The excited states of argon for a typical analytical torch rapidly diffuse towards the center in the higher region of the plasma. The presence of excess lithium makes no significant change in the excited states of argon. The increase in the RF power increases the intensity of argon excited states uniformly across the radial coordinate.

수소 첨가에 따른 30kW급 가스엔진 발전기의 발전효율 및 질소산화물 배출량 특성 연구 (A Study on the Generating Efficiency and NOx Emissions of a 30kW Gas Engine Generator with Hydrogen Addition)

  • 차효석;김태수;엄태준;전광민;송순호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.313-318
    • /
    • 2011
  • This study is about characteristics of generating efficiency and $NO_x$ emissions of a 30 kW gas engine generator in case of using model biogas with hydrogen addition. In this case, both generating efficiency and $NO_x$ emissions are lower than the case of using urban gas (LNG). However, generating efficiency and $NO_x$ emissions are higher than the case of using model biogas only. It means that adding hydrogen which has a high flame propagation velocity has the possibility to improve the generating efficiency, but simultaneously it is also able to increase the $NO_x$ emissions of a gas engine generator.

복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석 (Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation)

  • 임인권;정석호
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

플라즈마 반응기구조에 따른 코로나방전 및 NO-NO$_2$ 전환특성에 관한 실험적 연구 (Experimental Study on the Effect of Plasma Reactor Type on Corona Discharge and NO-NO2 Conversion Characteristics)

  • 박용성;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.65-71
    • /
    • 2002
  • Characteristics of corona discharge of the different types of the plasma reactors which are cone-hole and cone-plate is investigated experimentally. The discharge starts at lower voltage for the cathode corona than the anode corona and spark occurs at higher voltage for the cathode corona. And the cathode corona makes more stable discharge than the anode corona. The effect of the base gas in corona discharge for different O$_2$/N$_2$ concentrations is related with the gas molecular weight. The discharge for the smaller molecular weight gas occurs easier than for the high molecular weight gas. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. NO-NO$_2$ conversion increases with the energy density of corona discharge and the addition of O$_2$ in a base N$_2$ gas.

플라즈마 방전에 의한 $SO_x, NO_x$의 분해 (Decomposition of $SO_x, NO_x$ by Plasma Discharge)

  • 우인성;강현춘
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.73-77
    • /
    • 1999
  • In this study, $SO_2$ and $NO_2$ reduction have been investigated by using coil type plasma reactor. The experiments have been carried out changing discharge power, gas flow rate frequency and electrode style to obtain the decomposition rate. Decomposition rates of $SO_2$ and $NO_2$ were obtained 20~98% at gas flow rate 100ml/min~1,000ml/min and discharge power 5~25w respectively. The energy efficiency is very good at the high frequency power. The decomposition rate of $SO_2$ for 5kHz power supply is only 90%, but for 10kHz power supply is very high, more than 98% for 15w. The decomposition rate is increasing according to the residence time or the power consumption of the discharge. About 15W discharge power for 17$cm^2$ reactor is necessary to obtain the decomposition rate of $SO_2$ and $NO_2$ of more than 85% or 98%. From these experiments, the consumption power of the decomposition rate of 98% in 300ppm $NO_2$ gas in nitrogen gas proved to be 18W and 300ppm $SO_2$ gas to be 15w.

  • PDF