• Title/Summary/Keyword: NO and cytokines production

Search Result 768, Processing Time 0.026 seconds

Anti-allergic Effects of Gagam-YangGyeokSan on RBL-2H3 Mast Cells and OVA/alum Sensitized Mice (가감양격산(加減凉膈散)이 RBL-2H3 비만세포와 OVA/alum에 감작된 생쥐에 미치는 항알레르기 효과)

  • Lee, Yun Shil;Han, Jae Kyung;Kim, Yun Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.10-23
    • /
    • 2012
  • Objectives: Gagamyanggyeoksan (G-YGS) has been used to suppress allergic reaction, however, the cellular target of G-YGS and its mode of action remain unclear. The present study was designed to investigate the effect of extracted G-YGS on the PMA and lonomycin (PI)-induced activation of RBL-2H3. Methods: For this investigation, We examined IL-4, IL-13 mRNA expression by Real-Time PCR, IL-4, IL-13 production by ELISA analysis and manifestations of GATA-1, GATA-2, NF-AT1, NF-AT2, AP-1 and NF-${\kappa}B$ p65 transcription factors by western blotting, OVA-specific IgE, IL-4, IL-13 by mouse be sensitive to OVA. Results: Here we showed that treatment of RBL-2H3 mast cells with G-YGS, suppressed PI-induced production of Th2 cytokines including IL-4 and IL-13 in a dose dependent manner. The mRNA expression of IL-4 were completely abolished by G-YGS at the concentration of $100{\mu}g/ml$. Data from a stable cell lines consistently expressing IL-4. And the mRNA expression of IL-13 were abolished by G-YGS at the $200{\mu}g/ml$. But there is no difference between the $50{\mu}g/ml$, the $100{\mu}g/ml$ and the comparison. Results from the western blot analysis of transcription factors involving IL-4 and IL-13 expression indicated that it prominently decreased the expression of mast cell specific transcricption factors including GATA-1, GATA-2, NF-AT2, c-Jun, NF-${\kappa}B$ p65 but not c-Fos. And G-YGS suppressed IgE, IL-4, IL-13 in mouse be sensitive to OVA. Conclusions We suggested the anti-allergic activities of G-YGS might be mediated by down-regulation of Th2 cytokines such as IL-4 and IL-13 through the regulation of transcription factors as GATA-1, GATA-2, NF-AT2, c-Jun, NF-${\kappa}B$ p65.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.

Effect of Lectin Isolated from Serrognathus platymelus castanicolor Larvae on the Various Cytokine Expressions (넓적사슴벌레(Serrognathus platymelus castanicolor) 유충으로부터 분리한 렉틴의 사이토카인 발현)

  • Jo, Su-Hyun;Kim, Se-Jin;Chung, See-Ryun;Jeune, Kyung-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.221-228
    • /
    • 2006
  • A lectin was purified from Serrognathus platymelus castanicolor larvae and named as SPL. The purification was carried out by ion-exchange chromatography on DEAE Sephadex A-50 and gel filtration chromatography on Sephadex G-200. The purity of the protein was verified by polyacrylamide gel electrophoresis and the purified lectin agglutinated erythrocytes of rabbit and human A, B, O, AB. SPL was tested it's ability to enhance the expressions of cytokines, $IL-1\alpha$, IL-2, IL-6, $TNF\alpha$ and $IFN\gamma$ by human peripheral blood mononuclear cells (PBMC) obtained from healthy donors. mRNA analyses were performed by RT-PCR at the moment of 1, 4, 8, 24, 48, 72 and 96 h after stimulation of PBMC with purified SPL. The patterns of IL-2 band were slightly expressed from 24 h and the strongest band was appeared at 96 h. The expressions of $IL-1\alpha$ and IL-6 mRNA were strong from 1 to 8 h and those of $TNF\alpha$ were from 48 to 96 h. The mRNA encoding $IFN\gamma$ were not detected. The addition of SPL for macrophage cultures induced production of nitric oxide (NO) by cells in a dose-dependent manner. NO release was partially inhibited by $TNF\alpha$ antibodies. These results suggest that SPL has the ability to enhance cytokine expressions in PBMC and to induce the NO release by TNFa in macrophage cultures from PBMC cultures.

Inhibitory Effect of Jeungaektang Water Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - activated RAW 264.7 Cells (증액탕(增液湯) 물추출물이 LPS로 유도된 RAW 264.7 cell에서의 Nitric Oxide 및 Cytokine에 미치는 영향)

  • Ahn, Sun-June;Lee, Jong-Rok;Kim, Sang-Chan;Jee, Seon-Young
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.163-173
    • /
    • 2007
  • Jeungaektang (JAT) is the herbal formula, has the effect of moistening the dryness by activating lung Qi and by nourishing Yin, has being used for dryness syndromes. Generally the herbal formulae for moistening dryness are used for exogenous or endogenous dryness syndromes. JAT has been clinically used for the treatment of endogenous dryness syndromes. It is composed of Scrophulariae Radix. Rehmanniae Radix and Liriopis Tuber. Recent studies showed that JAT has a protective effect against $CCl_{4}-induced$ hepatotoxicity and anti-inflammatory effects against ear swelling of mouse induced by Crotonis Fructus. However, the effect of JAT on the immunological activity was rarely studied. Therefore, this study evaluated the effects of JAT the regulatory mechanism of nitric oxide (NO) and cytokines in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. After the treatment of JAT water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Cyclooxygenase-2 (COX -2) and inducible nitric oxide synthase (iNOS) were determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that JAT inhibited the production of nitrite and nitrate ($0.1{\sim}1.0$ mg/ml), iNOS ($0.1{\sim}1.0$ mg/ml), $interleukin-1{\beta}$ ( $0.1{\sim}1.0$ mg/ml) and tumor necrosis $factor-{\alpha}$ ($0.1{\sim}1.0$ mg/ml) in RAW 264.7 cells activated with LPS. Furthermore, JAT inhibited the expression of COX-2 expression and production of prostagladin E2 ($0.1{\sim}1.0$ mg/ml). These findings suggest that JAT can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

Serotonins of safflower seeds play a key role in anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Dong-Hee;Moon, Yong-Sun;Park, Tae-Soon;Son, Jun-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.364-369
    • /
    • 2015
  • Safflower (Carthamus tinctorius) seeds are wellknown traditional oriental medicines that have long been used for the remedies of blood stasis and bone formation in east Asia. In this study, ethyl acetate (EtOAc) was used for extraction of the main chemical compounds from C. tinctorius seeds. Four major compounds were identified, acacetin, cosmosiin, N-feruloyl serotonin and N-(p-coumaroyl) serotonin. Each compound was evaluated for its inhibitory activity against the inflammatory process of macrophages. All compounds significantly inhibited production of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and pro-inflammatory cytokines. The protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dramatically decreased by serotonins in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophages. These results suggest that serotonin derivatives from safflower seeds may reduce inflammation-related diseases.

Cyanidin 3 - rutinoside chloride (CRC) Regulates Pro-inflammatory Mediators in PMACI-stimulated HMC-1 Cells

  • Jeon, Yong-deok;AYE, AYE;Song, Young-Jae;Soh, Ju-Ryoun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.106-106
    • /
    • 2018
  • Cyanidin 3 - rutinoside chloride (CRC) is major anthocyanin, found in Schisandra chinensis, is known to have antioxidant, anticancer, anti-inflammatory, tonic, and anti-aging effects in Korea, China and Japan. In the present study, the human mast cell line (HMC-1) was used to investigate the effects on the production of pro-inflammatory mediators. In this study, CRC showed no cytotoxicity in HMC-1. CRC significantly inhibited the secretion of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6 in PMA plus A23187 cacium ionophore (PMACI)-stimulated HMC-1 cells. In addition, CRC suppressed the serum levels of IgE. Furthermore, CRC decreased the PMACI- stimulated phosphorylation of mitogen activated protein kinases (MAPKs) such as p-ERK, p- JNK and p-P38. These results indicate that the pharmacological actions of CRC suggest their potential activity for treatment of allergic inflammation through the down-regulation of mast cell activation.

  • PDF

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Inhibition of Inflammatory-cytokines Production and Prostaglandin E2 Activity by Puerariae Radix Extracts (갈근 추출물에 의한 염증성 Cytokine 생성 억제 및 Prostaglandin E2 활성 저해에 관한 연구)

  • Kim, Si-Na;Kim, Hee-Seok;Nam, Gyeong-Sug;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • The ethanol extracts of Puerariae Radix inhibited cyclooxygenase-2 (COX-2) activity in bone marrow derived mast cells (BMMC). COX-2 is responsible for the production of large amounts of proinflammatory prostaglandins (PGs) at the inflammatory site. We have investigated the anti-inflammatory effect of ethyl acetate fraction from $70\%$ ethanol extract of Puerariae Radix (EPR), and attempted acetic acid induced writhing to verify the analgesic effect. Inflammation was induced by interleukin-1 (IL-1), tumor necrosis factor-a (TNF-a), $inteferon-\gamma$ $(IFN-\gamma)$ and lipopolysaccharide (LPS). EPR showed strong inhibitory efficacy against cytokine-induced proteoglycan degradation, prostaglandin $E_2\;(PGE_2)$ production, nitric oxide (NO) production, and matrix-metalloproteinases (MMPs) expression in mouse macrophage and rabbit articular chondrocyte. In the writhing test, EPR $(200\~400\;mg/kg)$ exhibited a dose-dependent inhibition of writhing. The results indicate that EPR have anti-inflammatory and analgesic activities, and could be a good herbal medicine candidate for treating of osteoarthritis (OA).

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.194-201
    • /
    • 2016
  • The anti-inflammatory activity of ethanol extract from Chondrus nipponicus Yendo (CNYEE) was investigated by measuring production of a lipopolysaccharide-induced inflammatory response mediator. CNYEE had no cytotoxic effects on proliferation of macrophages compared to the control. CNYEE significantly inhibited (over 50%) NO production at $50{\mu}g/mL$, with inhibitory effects on expression levels of cytokines such as interleukin (IL)-6, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$. In particular, IL-6 inhibitory activity of CNYEE was higher than 70% at $100{\mu}g/mL$. CNYEE also reduced protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor (NF)-${\kappa}B$ in a dose-dependent manner. CNYEE also significantly reduced phosphorylation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Therefore, these results suggest that CNYEE may have anti-inflammatory effects by modulating the NF-${\kappa}B$ and mitogen-activated protein kinases signaling pathways and may be used as an anti-inflammatory therapeutic material.